## FIGURES FOR SOLUTIONS TO SELECTED EXERCISES

## III : Basic Euclidean Concepts and theorems

## III. 2 : Basic theorems on triangles

## III.2.3.



We are given that $\mathbf{R} * \mathbf{S} * \mathbf{T}, \boldsymbol{d}(\mathbf{R}, \mathbf{S})=\boldsymbol{d}(\mathrm{L}, \mathbf{T})$, and $\boldsymbol{d}(\mathbf{P}, \mathbf{S})=\boldsymbol{d}(\mathbf{P}, \mathbf{T})$. The objective is to prove that we have overlapping congruent triangles $\triangle R T P \cong \triangle L S P$ and that we also have $|\angle \mathrm{PSR}|=|\angle \mathrm{PTL}|$.
III.2.4.


The point $\mathbf{B}$ which is the midpoint of both [AE] and [CD], and the objective is to prove that $\mathbf{A C}|\mid \mathbf{D E}$. One method for doing this is to find a pair of alternate interior angles.
III.2.6.


We are given that $\boldsymbol{d}(\mathbf{A}, \mathbf{B})=\boldsymbol{d}(\mathbf{A}, \mathbf{C})$, and that $\mathbf{D}$ and E are points of $(\mathbf{A B})$ and $(\mathbf{A C})$ such that $d(A, D)=\boldsymbol{d}(\mathbf{A}, E)$. To prove that $\mathbf{B C} \| D E$, it suffices to find a pair of corresponding angles.

## III.2.7.



More generally, if $\mathbf{D}$ is a point in the interior of $\triangle A B C$ such that [AD bisects $\angle C A B$ and [BD bisects $\angle C B A$, then there is a formula relating $|\angle A D B|$ and $|\angle A C B|$.

## III.2.8.



The perpendicular pairs of lines are marked in the drawing, and the objective is to show that $|\angle D A B|=|\angle B E C|$.

Note: This exercise is actually a special case of a result stated in many high school geometry texts: If two angles have their corresponding sides perpendicular, left to left and right to right, then the angles have equal measurements. - More formally, the general result can be stated as follows: If $\angle \mathrm{DAB}$ and $\angle \mathrm{FEC}$ are such that $\mathrm{AB} \perp \mathrm{EC}$ and $\mathrm{AD} \perp \mathrm{EF}$, then $|\angle \mathrm{DAB}|=|\angle \mathrm{FEC}|$. $-\quad$ In order to prove the general result, it is necessary to look at the points $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ and $\mathbf{W}$ where (respectively) $\mathbf{A B}$ meets EC, AD meets EF, AD meets EC, and $\mathbf{A B}$ meets EF and find where they lie on the appropriate lines; Lemma III.4.2 guarantees that the last two pairs of lines have points in common. For the case studied in the exercise, the point $\mathbf{X}$ (which is just $\mathbf{C}$ ) lies on ( $\mathbf{A B}$ and ( $E C$, the point $\mathbf{Y}$ (which is just $\mathbf{D}$ ) lies on (AD and (EF, the point $\mathbf{W}$ (which is just $\mathbf{B}$ ) lies on ( $\mathbf{A B}$ and (EF, and the drawing suggests that the point $\mathbf{Z}$ lies on (AD and (EC. It is also necessary to analyze all the possible betweenness conditions which can hold for the various triples of collinear points.

