SOLUTIONS TO ADDITIONAL EXERCISES FOR III.1 AND III.2

Illustrations to accompany these solutions are given on the last page.

D1. We shall follow the hints. Take a basis B for V (which has r elements) and extend it to a basis for \mathbb{R}^n by adding a suitable set of n - r vectors A; order the basis so that the elements of B come first. If we apply Gram-Schmidt process to obtain an orthonormal basis C of \mathbb{R}^n from $B \cup A$, then by construction the first r vectors in C will form an orthonormal basis for V. Let A' be the last n - r vectors in C; we claim that A'forms an orthonormal basis for V^{\perp} .

First of all, every vector in A' lies in V^{\perp} , for every vector in V has the form $\sum_{j \leq r} t_j \mathbf{c}_j$ and the dot product of such a vector with \mathbf{c}_k is zero if k > r. Therefore V^{\perp} contains the (n-r)-dimensional vector subspace spanned by A'. To see that nothing else can be contained in V^{\perp} , consider a vector \mathbf{y} which is not a linear combination of the vectors in A'. Since C is an orthonormal basis, we must have $\mathbf{y} = \sum_{j \leq n} t_k \mathbf{c}_j$ where $t_m \neq 0$ for some $m \leq k$. But the latter implies that $\mathbf{y} \cdot \mathbf{c}_m = t_m \neq 0$, and therefore \mathbf{y} cannot lie in V^{\perp} . Thus the vectors in A' form a basis of this subspace and hence its dimension is n - r.

To conclude, as noted in the hint it suffices to prove that V is a vector subspace of $(V^{\perp})^{\perp} = V$ and the dimensions of these two subspaces are equal. The first statement follows since $\mathbf{v} \in V$ implies $\mathbf{v} \cdot \mathbf{x} = 0$ for all $\mathbf{x} \in V^{\perp}$, and the first follows because the dimension of $(V^{\perp})^{\perp} = V$ is equal to

$$n - \dim V^{\perp} = n - (n - r) = r = \dim V$$
.

Since $V_1 \subset V_2$ and dim $V_1 = \dim V_2$ imply $V_1 = V_2$, the equality of V and $(V^{\perp})^{\perp} = V$ follows immediately.

Note. One important consequence of the preceding exercise is the following: If V and W are vector subspaces of \mathbb{R}^n such that $V \neq W$, then $V^{\perp} \neq W^{\perp}$. — For if $V^{\perp} = W^{\perp}$, then their orthogonal complements, which by the exercise are V and W respectively, would also have to be equal.

D2. By the preceding exercise we know that dim $V^{\perp} = 2$ and dim $W^{\perp} = 1$. Furthermore, since V and W^{\perp} are distinct 1- dimensional subspaces, it follows that the dimension of their intersection is strictly less than 1 and hence the intersection must be $\{0\}$.

Since V and W^{\perp} are distinct 1-dimensional vector subspaces, it follows that their orthogonal complements V^{\perp} and $(W^{\perp})^{\perp} = W$ are distinct 2-dimensional vector subspaces (see the note following the solution of D1). Therefore the linear sum $V^{\perp} + W$ properly contains each of them (otherwise they would be equal), so its dimension is at least 3; since we are in \mathbb{R}^3 , the dimension must be exactly 3 and the linear sum is just \mathbb{R}^3 . Applying the Dimension Formula we see that

$$\dim W \cap V^{\perp} = \dim W + \dim V^{\perp} - \dim \mathbb{R}^3 = 2 + 2 - 3 = 1$$

D3. Write the line and plane as $\mathbf{x} + V$ and $\mathbf{x} + W$ respectively; the assumptions imply that V is not equal to W^{\perp} and hence $M = \mathbf{x} + (W \cap V^{\perp})$ is a line which is contained in both $P = \mathbf{x} + W$ and in the plane $Q = \mathbf{x} + V^{\perp}$ Since Q is the unique plane through \mathbf{x} which is perpendicular to L, it follows that M has the properties described in the statement of the exercise.

To see that there is only one line, suppose that M' has the required properties. Then it follows that $M' \subset Q$, and since $M' \subset P$ is assumed we know that M' is contained in $P \cap Q$; since the latter is a line, it follows that we have $M' = P \cap Q$, and since the intersection is M we have M' = M.

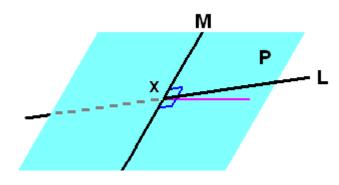
D4. The condition a < 2x follows from the Triangle Inequality for triples of noncollinear points. Conversely, if we have a < 2x, then we also have

$$0 < h = \sqrt{x^2 - \frac{a^2}{4}}$$

By the Protractor and Ruler Postulates we can construct a right triangle ΔABC such that $AB \perp BC$, d(A, B) = a/2, and d(B, C) = h. By the Pythagorean Theorem we know that $d(A, C) = 90^{\circ}$. Now take $D \in (AB$ such that d(A, D) = a. It then follows that d(B, D) = a/2 and by **SAS** and perpendicularity we have $\Delta ABC \cong \Delta DBC$. It follows that d(D, C) = d(A, C) = x, and therefore the triangle ΔABC is an isosceles triangle such that the lengths of two sides are equal to x and the length of the third side is equal to a.

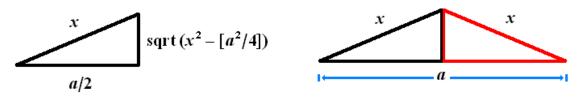
FIGURE FOR SOLUTIONS TO ADDITIONAL EXERCISES, SET D

D3.



The idea in the hint is to show that **M** is the intersection of **P** with the plane **Q** through **X** such that $L \perp Q$. In the drawing the perpendicular projection of **L** onto the plane **P** is drawn in pink. Observe that this projection **N** is a line through **X** and **M** is also the line through **X** which is perpendicular to the plane of **L** and **N** (try to prove this assertion using vectors — it is not particularly difficult!).

D4.



Since 2x > a it follows that $x^2 - [a^2/4]$ is positive and hence one can construct a right triangle whose sides have lengths a and $x^2 - [a^2/4]$. The hypotenuse of such a triangle must have length equal to x by the Pythagorean Theorem. The second drawing indicates what should happen if we take the mirror image of this triangle with respect to the line containing the side of length $x^2 - [a^2/4]$. In order to complete the proof it is necessary to give reasons why this picture is accurate and one obtains an isosceles triangle with the desired properties.