
SOLUTIONS TO ADDITIONAL EXERCISES FOR III.1 AND III.2

Illustrations to accompany these solutions are given on the last page.

D1. We shall follow the hints. Take a basis B for V (which has r elements) and
extend it to a basis for R

n by adding a suitable set of n − r vectors A; order the basis
so that the elements of B come first. If we apply Gram-Schmidt process to obtain an
orthonormal basis C of R

n from B ∪ A, then by construction the first r vectors in C will
form an orthonormal basis for V . Let A′ be the last n − r vectors in C; we claim that A′

forms an orthonormal basis for V ⊥.

First of all, every vector in A′ lies in V ⊥, for every vector in V has the form
∑

j≤r tjcj

and the dot product of such a vector with ck is zero if k > r. Therefore V ⊥ contains the
(n − r)−dimensional vector subspace spanned by A′. To see that nothing else can be
contained in V ⊥, consider a vector y which is not a linear combination of the vectors in
A′. Since C is an orthonormal basis, we must have y =

∑

j≤n tkcj where tm 6= 0 for some

m ≤ k. But the latter implies that y · cm = tm 6= 0, and therefore y cannot lie in V ⊥.
Thus the vectors in A′ form a basis of this subspace and hence its dimension is n − r.

To conclude, as noted in the hint it suffices to prove that V is a vector subspace of
(

V ⊥
)⊥

= V and the dimensions of these two subspaces are equal. The first statement
follows since v ∈ V implies v · x = 0 for all x ∈ V ⊥, and the first follows because the

dimension of
(

V ⊥
)⊥

= V is equal to

n − dim V ⊥ = n − (n − r) = r = dim V .

Since V1 ⊂ V2 and dimV1 = dim V2 imply V1 = V2, the equality of V and
(

V ⊥
)⊥

= V
follows immediately.

Note. One important consequence of the preceding exercise is the following: If V and

W are vector subspaces of R
n such that V 6= W , then V ⊥ 6= W⊥. — For if V ⊥ = W⊥,

then their orthogonal complements, which by the exercise are V and W respectively, would
also have to be equal.

D2. By the preceding exercise we know that dim V ⊥ = 2 and dim W⊥ = 1. Further-
more, since V and W⊥ are distinct 1− dimensional subspaces, it follows that the dimension
of their intersection is strictly less than 1 and hence the intersection must be {0}.

Since V and W⊥ are distinct 1−dimensional vector subspaces, it follows that their or-

thogonal complements V ⊥ and
(

W⊥
)⊥

= W are distinct 2−dimensional vector subspaces
(see the note following the solution of D1). Therefore the linear sum V ⊥ + W properly
contains each of them (otherwise they would be equal), so its dimension is at least 3; since
we are in R

3, the dimension must be exactly 3 and the linear sum is just R
3. Applying

the Dimension Formula we see that

dim W ∩ V ⊥ = dimW + dim V ⊥ − dim R
3 = 2 + 2 − 3 = 1
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D3. Write the line and plane as x + V and x + W respectively; the assumptions
imply that V is not equal to W⊥ and hence M = x+

(

W ∩ V ⊥
)

is a line which is contained
in both P = x + W and in the plane Q = x + V ⊥ Since Q is the unique plane through x

which is perpendicular to L, it follows that M has the properties described in the statement
of the exercise.

To see that there is only one line, suppose that M ′ has the required properties. Then
it follows that M ′ ⊂ Q, and since M ′ ⊂ P is assumed we know that M ′ is contained
in P ∩ Q; since the latter is a line, it follows that we have M ′ = P ∩ Q, and since the
intersection is M we have M ′ = M .

D4. The condition a < 2x follows from the Triangle Inequality for triples of non-
collinear points. Conversely, if we have a < 2x, then we also have

0 < h =

√

x2 −
a2

4
.

By the Protractor and Ruler Postulates we can construct a right triangle ∆ABC such
that AB ⊥ BC, d(A, B) = a/2, and d(B, C) = h. By the Pythagorean Theorem we know
that d(A, C) = 90◦. Now take D ∈ (AB such that d(A, D) = a. It then follows that
d(B, D) = a/2 and by SAS and perpendicularity we have ∆ABC ∼= ∆DBC. It follows
that d(D, C) = d(A, C) = x, and therefore the triangle ∆ABC is an isosceles triangle such
that the lengths of two sides are equal to x and the length of the third side is equal to a.

2



FIGURE FOR SOLUTIONS TO  
 

ADDITIONAL EXERCISES, SET D 

 
  

  
 

D3. 
 

 
 

The idea in the hint is to show that M is the intersection of P with the plane Q through X 

such that L ⊥⊥⊥⊥ Q.  In the drawing the perpendicular projection of L onto the plane P is 
drawn in pink.  Observe that this projection N is a line through X and M is also the line 
through X which is perpendicular to the plane of L and N (try to prove this assertion 

using vectors — it is not particularly difficult!). 
 
 

D4. 
 

 
 

Since 2x  >  a it follows that  x 

2
 – [a 

2/4] is positive and hence one can construct a 

right triangle whose sides have lengths a and  x 

2
 – [a 

2/4].  The hypotenuse of such a 

triangle must have length equal to x by the Pythagorean Theorem.   The second drawing 
indicates what should happen if we take the mirror image of this triangle with respect to 

the line containing the side of length x 

2
 – [a 

2/4].   In order to complete the proof it is 

necessary to give reasons why this picture is accurate and one obtains an isosceles 
triangle with the desired properties.   
 


