
FIGURES FOR SOLUTIONS TO SELECTED EXERCISES  

 
 

V :  Introduction to non – Euclidean geometry 
 

 

 

V.1 : Facts from spherical geometry 
 

 

 

V.1.1. 
 

 
 

The objective is to show that the minor arc m does not contain a pair of antipodal points 
but the major arc M does contain such a pair.   As indicated by the hint, the minor arc 

consists of the endpoints and all points of the circle which lie in the interior of ∠∠∠∠AQB.   
 

V.1.2. 
 

 
 
 

The plane and the sphere intersect in a circle, and the objective of the problem is to find 

the center of the circle determined by the sphere with equation x
2  

+  y
2  

+  z
2
  =  1 and 

the plane with equation x  +  y  +  z  =  1.   As noted in the hint, the circle’s center is 
the foot of the perpendicular from the sphere’s center to the plane. 
 



 

 

 

V.2 : Attempts to prove Euclid’s Fifth Postulate 
 

 

V.2.1(a). 

 

Given the line L  =  AB and a ruler function f : L →→→→ R, suppose that a  =  f (A) and b  =  

f (B) satisfy a  <  b.    Let    x    >    0,     and consider the unique point X with f (X)     =    a + x.  
The objectives are to show that X lies on (AB and is the unique such point satisfying 

d(A, X)  =  x.  .   
 

V.2.1(b). 
 

  
The figure on the left relates to the existence proof.  As in Exercise II.3.9, one can 

construct ����YAB such that X and Y lie on opposite sides of AB and ����XAB   ≅≅≅≅   
����YAB.  The objective is to prove that XY is perpendicular to AB.   
 

The figure on the right relates to the first uniqueness proof.  One has a hypothetical 
situation where there are two perpendiculars to the horizontal line which pass through X, 
and the goal is to show that this is impossible using the Exterior Angle Theorem.  

 

The second uniqueness proof uses the following hypothetical picture, in which C and D 
are the midpoints of [XY] and [XZ], and this time the goal is to derive the impossible 

conclusion that  |∠∠∠∠ADC|   =   | ∠∠∠∠ ACD|   =   90°°°°: 
 



 

V.2.1(c). 
 

 
 

Consider the triangle ����ACD such that A∗B∗D and d(A, D)  =  d(A, B) + d(B, C); it 
suffices to prove that the left hand side is greater than d(A, C), and the latter is 

equivalent to showing that | ∠∠∠∠ ACD | > | ∠∠∠∠ ADC |.  
 

V.2.1(d). 

 
 

It suffices to consider the case where d(A, C)  >  d(D, F); if equality holds then the 

conclusion is true by SAS, and if the reverse inequality holds one can reverse the roles 
of the two triangles in the argument for the given case.  As suggested in the hint for this 

problem, consider the triangle  ����ABG  such that G ∈∈∈∈ (AC and ����ABG   ≅≅≅≅   ����DEF.   

 
 

 V.3 : Neutral geometry 
 
 

V.3.3. 
 

 
 

Split the Saccheri quadrilateral into two triangles two ways using the two diagonals.  The 
idea of the proof is to show first that the two right triangles containing the base are 
congruent, and to use this fact as a step in proving that the two triangles containing the 

summit are congruent; equality of the summit angle measures will follow from this. 
 



V.3.4. 
 

  
 

The idea is to prove that X is equidistant from C and D using congruent triangles (hence 
XY is the perpendicular bisector of [CD]) and to prove that Y is equidistant from A and B 

using congruent triangles (hence XY must also be the perpendicular bisector of [AB]).  
By the preceding exercise, the measures of the angles with vertices C and D are equal. 
 

V.3.5. 
 

 

 
 
 

We shall assume the setting in the hint for this exercise.  A major step in the proof is to 
show that the summits of the adjacent Saccheri quadrilaterals in the drawing have equal 
length, and this requires the use of auxiliary diagonal segments as in the picture above.  
It will then follow (by an induction argument) that the summits of all the Saccheri 

quadrilaterals in the picture will have equal lengths. 
 

V.3.6. 
 

 

 
 
 

We are given a pair of Saccheri quadrilaterals as illustrated.  One approach to proving 
this exercise is to split the quadrilaterals into two triangles along diagonals and show that 
the corresponding triangles are congruent. 
 



V.3.7. 
 
 

 
 
 

We are given a pair of Lambert quadrilaterals as illustrated.  One approach to proving 
this exercise is to split the quadrilaterals into two triangles along diagonals and show that 
the corresponding triangles are congruent. 
 

V.3.9. 
 

 

 
 

We begin with the Lambert quadrilateral � ABCD, and we then construct a Saccheri 

quadrilateral � AEFD such that the base of the latter has twice the length of d(A, B) and 

the lengths of the lateral sides are equal to d(A, D).   The point G is the midpoint of the 

segment [DF], and the drawing suggests that G    =    C.   Proving this is a key step in the 
argument.  Observe that BC and BG are both perpendicular to AB, while DC is 
perpendicular to BC and DF is perpendicular to BG.   By a previous exercise we have a 

relationship between d(A, E) and d(D, F).    
 

V.3.11. 
 

 



 

We know it is possible to construct a Saccheri quadrilateral whose base has length 2q 

and whose sides have length p.  If we join the midpoints of the summit and base by a 
line segment, then by a previous exercise we obtain a pair of Lambert quadrilaterals, 

and the lengths of the appropriate sides are p and q.   
 

V.3.12. 
 
 

 
 
 

One has perpendicular lines as marked, and d(B, E)  =  s.  The objective is to show that 
the perpendicular to AB at E contains a point F of (CD); if such a point exists, then BC 
and EF have a common perpendicular line EB, and also by construction the two lines 

AB = EB and CD = CF are both perpendicular to the line BC. 
 

Note. The drawing below provides an example illustrating the remarks 
following the statement of the exercise.  It is given using the Poincaré 

model for hyperbolic geometry, which is described in Section V.7 of the 
notes (in this model the radii and the arcs through A and C are lines, with 
right angles as illustrated).  

 
 

 
 

Explanation.  As noted above, the arcs and radii represent lines in the 
hyperbolic plane, and these lines are perpendicular at all indicated points 
of intersection.  In this particular example distances from the point B to 

the points A and C are equal.  If d(A, B) and d(B, C) are too large, then 
as shown above it might not be possible to find a point D such that the 
points A, B, C, D form the vertices of a Lambert quadrilateral.   More 



generally, in such cases it is not even possible to find an ordered set of 
four points W, X, Y, Z which form the vertices of a Lambert quadrilateral 

(in that order) with right angles at W, X and Y and measurements d(W, X)  

=  d(A, B), d(X, Y)  =  d(B, C). 
 

V.3.13. – V.3.14. 
 

 
 
The points D, E, F and D′′′′, E′′′′, F′′′′ are the midpoints of the appropriate sides of ����ABC 

and ����A′′′′B′′′′C′′′′ respectively.  In Exercise V.3.13 the objective is first to prove that the 
three pairs of outside triangles with the same coloring are congruent and then to prove 
that the triangles in the middle of the two large triangles are congruent, while in Exercise 

V.3.14 the objective is to show that all of the eight small triangles in the two large 
triangles are congruent to each other. 

 

 

V.4 : Angle defects and related phenomena 
 
 

V.4.3.  
 

 
 

As indicated in the hint for this exercise, a preliminary objective is to show that the 

angular defect of one of the triangles ����ABD and ����ABC must be no greater than half 

the angular defect of ����ABC.   One way of proving the preliminary objective is to 
suppose this is false and use the additivity property of the angular defect to obtain a 
contradiction.   
 



V.4.4. 
 
 

  
 

There are two isosceles triangles ����ABC and ����ADE with bases [BC] and [DE] such 

that D and E lie on the legs of ����ABC.   The angle defect of ����ADE is less than the 

angle defect of ����ABC. 
 

V.4.5. 
 

 
 

We know ����ABC is equilateral, and the object is to prove the same for ����DEF, given 

that D, E, F    are the midpoints for the sides of ����ABC.   One plausibility argument for the 
assertion about angular measurements in the exercise is that the defect of the second 
triangle turns out to be less than the defect of the first, and for equilateral (hence 
equiangular) triangles the measure of the vertex angles    increases    as the defect 
decreases.  Of course, the limiting value of the vertex angle measurement as the defect 

approaches 0 is equal to 60 degrees.  For the final part of the problem, one step is to 

show that ����AEF  ≅≅≅≅  ����BDF  ≅≅≅≅  ����CDE and to note that all these triangles are isosceles 

but not equilateral or equiangular.      In fact, one can use the preceding exercise to 

compare | ∠∠∠∠ ABC | = | ∠∠∠∠ CAB | and | ∠∠∠∠ AEF | .   
 

V.4.6. 
 

 
 

How do the defects of ����ABC and ����ADE compare, and what does this imply about the 
third angles of the two triangles? 
 



V.4.7. 
 

 
 

The Saccheri quadrilateral illustrated above is in a hyperbolic plane.  What 

consequences can be drawn if the ray [AC bisects ∠∠∠∠ DAB?   
 

V.4.8. 
 

 
 

The point Y is the foot of the perpendicular from B to L, the line M is perpendicular to the 
line BY (hence the latter is perpendicular to both L and M), and N is a line through B 
which is parallel to L but distinct from M (such a second parallel line exists by our 

assumptions on L and B).  The angle ∠∠∠∠ ABC is formed from one ray of M and one ray of 
N as suggested above, and it is given explicitly in the hint for the exercise. 


