
MORE PROOFS IN NEUTRAL GEOMETRY 
 

We shall indicate how some proofs in the course notes can be modified so that they are valid in 
neutral geometry. 
 

Theorem  I I I.4.6.    Let  A,  B  and  C be noncollinear, and let  [AD  be the bisector of  ∠∠∠∠BAC.  

Given a point  X  in  Int ∠∠∠∠BAC,  let  YX  and  ZX  be the feet of the perpendiculars from  X  to  

AB  and  AC  respectively.  Then  X ∈∈∈∈  (AD  if and only if   d(X, YX)  =  d(X, ZX). 
 

Proof.   We shall reproduce the argument given in the notes, crossing out the passages which 
rely on Playfair’s Postulate and highlighting their replacements or other insertions.   One can 

check directly that the proof of  Lemma  I I I.4.7 in the notes is valid in neutral geometry, so the 
use of this result in the modified argument will not create any problems. 
 

Suppose first that  X  lies on the bisector.  Since  |∠∠∠∠BAC|  is less than  180°°°°,  it follows that 

both |∠∠∠∠XAB|  and  |∠∠∠∠XAC|  are less than  90°°°°, so by the lemma (I I I.4.7) we know that  Y  
lies on  (AB  and also  Z  lies on   (AC.   
 

 
 

Since  |∠∠∠∠XZA|  =  |∠∠∠∠XYA|  =  90°°°°  and  |∠∠∠∠XAZ|  =  |∠∠∠∠YAZ|   =   ½ |∠∠∠∠BAC|, we have  

����ZAX   ≅≅≅≅   ����YAX  by  AAS,  and hence  d(X,Y)  =  d(X, Z). 
 

Conversely, suppose that  X ∈∈∈∈  Int ∠∠∠∠BAC  and  d(X,Y)  =  d(X,Z).  We claim that  Y  and  Z  

lie on the open rays  (AB  and  (AC  respectively.  Since  |∠∠∠∠XAB|  +  |∠∠∠∠XAC|    =   |∠∠∠∠BAC|   
<   180°°°°  it follows that at least one of the terms on the left hand side must be strictly less than  

90°°°°.  Without loss of generality, we might as well assume that |∠∠∠∠XAC|   <    90°°°°; if not, we can 

retrieve the result when  |∠∠∠∠XAB|  <  90°°°°  by reversing the roles of  B  and  C  and of  Y  and  Z  

in the argument that follows.   By the lemma (I I I.4.7) the condition  |∠∠∠∠XAC|  <   90°°°°   implies 

that  Z  lies on  (AC.  If  Y  does not lie on  (AB,  then as in the lemma we either have  Y  =  A  

or else  Y∗A∗B.  We can dispose of the case  Y  =  A  as follows:  If this happens then we 

have a right triangle  ����XZA,  and since the hypotenuse is strictly longer than either of the other 

sides (if  ����FGH  is right triangle with a right angle at  G, then  Corollary  I I I.2.2  implies that  

∠∠∠∠FHG  is acute and  Theorem  I I I.2.5  implies that  d(F,H)  >  d(F,G)) this means that   d(X,Y)   

=   d(X,A)   >   d(X,Z),  contradicting our assumption that   d(X,Y)  =  d(X,Z).   
 

Thus it remains to eliminate the possibility that  Y∗A∗B  holds.  However, if  Y∗A∗B  holds, 

then  Y  and  B  lie on opposite sides of  AC.  Since  B  and  X  lie on the same side of  AC  by 
hypothesis, it follows that  Y  and  X  lie on opposite sides of  AC.  Thus the line  AC  and the 

segment  (XY)  have some point  W  in common.  It follows that  d(X, Y)   >   d(X,W).  Also, 
since  XZ  is perpendicular to  AC and meets the latter at  Z, it follows (say, from the 



Pythagorean Theorem  argument at the end of this sentence) that  d(X,W)  ≥  d(X,Z);  if  W  =  

Z  this is immediate, while if  W  ≠  Z  then  ����XZW  is right triangle with a right angle at  Z, so 

that  Corollary  I I I.2.2  implies that  ∠∠∠∠XWZ  is acute and  Theorem  I I I.2.5  implies that  

d(X,W)  >  d(X,Z).   Combining the observations in the preceding sentences, we have  d(X,Y)  

>  d(X,Z),  contradicting our assumption that these were equal.  Therefore  Y∗A∗B  is also 

impossible, and the only remaining option is for  Y  to lie on  (AB.   

 
 

Now that we know that  Y  and  Z  lie on the open rays  (AB and  (AC respectively, the rest of 

the proof is straightforward.  Triangles  ����XYA   and  ����XZA  are right triangles with right angles 
at  Y  and  Z  respectively (for the sake of convenience, we have inserted a copy of the first 
drawing in the proof).   
 

 
 

We know that  d(X, A)   =   d(X,A)  and also  d(X,Y)  =  d(X,Z), so by the Pythagorean 

Theorem Hypotenuse – Side Congruence Theorem for right triangles we have we also know 

that  d(A,Y)  =   d(A,Z).  Therefore  ����XYA   ≅≅≅≅   ����XZA,   by  SSS,  so that  |∠∠∠∠XAY|  =  

|∠∠∠∠XAZ|.  Since  Y  and  Z  lie on the open rays  (AB  and  (AC  respectively, we have  ∠∠∠∠XAB   

=  ∠∠∠∠XAY and  ∠∠∠∠XAZ  =  ∠∠∠∠XAC.  By assumption  X  lies in the interior of   ∠∠∠∠BAC, and 

therefore by the Additivity Postulate we have   |∠∠∠∠BAC|   =   |∠∠∠∠BAX|   +   |∠∠∠∠XAC|   =   

2|∠∠∠∠BAX|    =    2|∠∠∠∠XAC|,  so that   
 

|∠∠∠∠BAX|  =  |∠∠∠∠XAC|  =  ½ |∠∠∠∠BAC|, 
 

which means the ray  [AX  is the bisector of  ∠∠∠∠BAC.� 
 

Once we have the modified argument given above, the proof in the notes for the 
following theorem is also valid in neutral geometry:   
 

Theorem  I I I.4.8.   Given  ����ABC, let   [AD,   [BE   and  [CF  be the bisectors of   ∠∠∠∠BAC,  

∠∠∠∠ABC   and   ∠∠∠∠BCA   respectively.  Then the lines   AD,   BE   and   CF have a point in 

common, and it lies in the interior of  ����ABC.� 
 

REMARK.   In contrast, the theorem on excenters (Theorem  I I I.4.8) does  NOT  hold in a 
neutral plane for which Playfair’s Postulate is false; however, we shall not attempt to explain or 
prove this assertion here. 
 
 



The Triangle Midpoint Theorem in hyperbolic geometry 
 
 

In Euclidean geometry, if we are given ����ABC  such that  D and  E  are the midpoints of  [AB] 

and  [AC]  respectively, then we can conclude that  DE || BC  and  d(D, E)  =   ½ d(B, C).    In 
hyperbolic geometry, one can still prove that  DE || BC; more precisely, in hyperbolic geometry 
one can prove that these two lines have a common perpendicular.  On the other hand, in 

hyperbolic geometry we have  d(D, E)  <   ½ d(B, C).    Further information on this appears in 

Exercise 2 on pages  269 – 270  of Greenberg. 


