
SYNTHETIC GEOMETRY AND NUMBER SYSTEMS

When the foundations of Euclidean and non-Euclidean geometry were reformulated in the late
19th and early 20th centuries, the axiomatic settings did not use the primitive concepts of distance
and angle measurement which are central to the exposition in the course notes (an idea which
goes back to some writings of G. D. Birkhoff in the nineteen thirties). For example, the treatment
in D. Hilbert’s definitive Foundations of Geometry involved primitive concepts of betweenness,
and congruence of segments, congruence of angles (in addition to the usual primitive concepts of
lines and planes). Of course, Hilbert’s approach states its axioms in terms of these concepts, and
ultimately one can prove that the approach in these notes is equivalent to Hilbert’s (and all other
approaches for that matter). The Hilbert approach provides the setting for Greenberg’s book,
and Appendix B of Greenberg discusses several issues related in this approach as they apply to
hyperbolic geometry. The purpose of this document is to relate Greenberg’s perspective with that
of the course notes. In a very lengthy Appendix we shall consider one additional aspect of nonmetric
approaches to geometry; namely, finite geometrical systems.

Comparing the metric and nonmetric approaches

In Möıse, both the Hilbert and Birkhoff approaches are discussed at length, with the latter as
the primary setting. As noted in comments on page 138 that book, the underlying motivation for
the Birkhoff approach is that the concepts of linear and angular measurement have been central to
geometry on a theoretical level since the development of algebra; as Möıse suggests, this approach
did not appear in the Elements because the Greek mathematics at the time because the latter’s
grasp of algebra was extremely limited, so that even very simple algebraic issues were studied
geometrically. To quote Möıse, the adoption of linear and angular measurement as undefined
concepts “describe[s] the methods that in fact everybody uses.”

A second advantage is that the Birkhoff approach leads to a fairly rapid development of classical
geometry, which minimizes the amount of time and effort needed at the beginning to analyze the
statements on betweenness and separation which may seem self-evident and possibly too simple to
worry about (compare the comments in the second paragraph on page iii and the third paragraph
on page 60 of Möıse). In a classical approach along the lines of Hilbert’s development, many of the
justifications for such results are not at all transparent and require long, delicate arguments which
are often not helpful for understanding the big picture.

On the other hand, the modern definitions of the real number system, due to R. Dedekind
(1831–1916) and G. Cantor (1845–1918) in the second half of the 19th century, require some fairly
sophisticated concepts which are completely outside the scope of Greek mathematics and closely
related to the notion of continuity, and by a general principle of scientific thought called Ockham’s
razor (don’t introduce complicated auxiliary material to explain something unless this is simply
unavoidable or saves a great deal of time and effort) it is also highly desirable to look for alternative
formulations which do not use the full force of the real number system’s continuity properties and
(in a quotation cited on page 571 of Greenberg) demonstrate that “the true essence of geometry
can develop most naturally and economically.”

The key to passing back and forth between the two approaches is summarized very well in the
following sentence on page 573 of Greenberg:
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Every Hilbert plane [a system satisfying all the axioms except perhaps either
the Dedekind Continuity Axiom or the Euclidean parallel postulate, or possibly
both] has a field hidden in its geometry.

At the end of Section II.5 we mentioned that a similar statement is true for many abstract planes
which satisfy the standard axioms of incidence and the Euclidean Parallel Postulate, and in par-
ticular this is true if the plane lies inside a 3-space satisfying the corresponding assumptions. The
principle in the quotation leads directly to a four step approach to the systems he calls Hilbert
planes (systems which satisfy all the axioms except perhaps either the Dedekind Continuity Axiom
or the Euclidean parallel postulate, or possibly both); this approach is outlined on page 588.

REFERENCES. The approach taken in Greenberg’s book is designed to be very closely connected
that of the following more advanced textbook:

R. Hartshorne. Geometry: Euclid and Beyond. Springer-Verlag, New York, 2000.

Additional background references for this material are the books by Möıse and Forder, the book
by Birkhoff and Beatley, and the paper by Birkhoff; these are given in Unit II of the course notes.
The latter also contain links references to many other relevant sources. Some further references
for more specialized topics in Addenda A and B will be listed at the end of the latter. This will
be the starting point for our discussion, and we shall begin by describing the additional features
of this “hidden algebra” if the plane also satisfies Hilbert’s axioms of betweenness and congruence.
Much of this material appears in Greenberg, but it is dispersed throughout different sections, and
it seems worthwhile to gather everything together in one place. Similarly, our discussion of non-
Euclidean systems will include a chart summarizing the various places in Greenberg which deal
with non-Euclidean Hilbert planes.

The level of the discussion in this document is (unavoidably) somewhat higher than that of
the course notes; in many places it is probably close to the level of an introductory graduate level
algebra course.

Euclidean geometry without the real number system

At the end of Section II.5 we noted that one can introduce useful algebraic coordinate systems
into systems which satisfy the 3-dimensional Incidence Axioms (in Section II.1) and the Parallel
Postulate (in Section II.5); since the planes of interest to us are all equivalent to planes which
lie inside 3-spaces, the coordinatization result also applies to the planes that we shall consider
here. If the Parallel Postulate is true, this yields algebraic coordinate structures on all system
satisfying all the Hilbert axioms for Euclidean geometry except perhaps the Dedekind Continuity
Axiom (see pages 134–135 and 598–599 of Greenberg). The general results of Section II.5 in the
class notes state that the coordinates take values in an algebraic system called a division ring or a
skew-field; informally, in such a system one can perform addition, subtraction, multiplication and
division by nonzero coordinates, but the multiplication does not necessarily satisfy the commutative
multiplication property xy = yx.

If one also assumes that the plane or 3-space satisfies Hilbert’s axioms for betweenness and
congruence (see pages 597–598 of Greenberg), then the coordinate system has additional structure
called an ordering (special cases are described in Section 1.5 of Möıse, and the ties to geometry are
discussed on pages 117–118 of Greenberg). This means that there is a subset of positive elements
which is closed under addition and multiplication, and also has the property that for every nonzero
“number” x, either x or −x is positive. A standard algebraic argument shows the square of every
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nonzero element in an ordered division ring is positive. The coordinate system also turns out to
have the Pythagorean property described in the following definition:

Definition. An ordered division ring K is Pythagorean if for each element x in the system there
is a positive element y such that y2 = 1 + x2.

It is a straightforward exercise to prove the following result:

PROPOSITION. Suppose that K is a Pythagorean field and that a1, · · · , an are nonzero
elements of K. Then there is unique y ∈ K such that y is positive and

y2 =
√

a2
1

+ · · · + a2
n

.

We shall be interested mainly in ordered division rings which are ordered fields (so that xy

and yx are always equal); for the sake of completeness, we note that the books by Forder and
Hartshorne describe examples of ordered division rings which are not ordered fields. Standard re-
sults in projective geometry show that the algebraic commutative law of multiplication is equivalent
to a condition known as Pappus’ Hexagon Theorem; further information on this result appears in
Unit IV of the class notes and the following online document:

http://math.ucr.edu/∼res/progeom/pgnotes05.pdf

The Pappus Hexagon Theorem is a bit complicated to state (cf. also Greenberg, Advanced Project
3, pp. 99–100); however, there is a more easily stated, and extremely useful, hypothesis which
implies commutativity of multiplication and also considerably more:

THEOREM. Suppose that we are given a plane or 3-space E which satisfies all the Hilbert
axioms except (perhaps) the Dedekind Continuity Axiom and has coordinates given by the ordered
Pythagorean division ring K. Then the following are equivalent:

(i) The plane or space E satisfies the Archimedean Continuity Axiom (see Greenberg, page
599).

(ii) The ordered division ring K satisfies the commutative law of multiplication and the Archi-
medean Property (see Greenberg, page 601).

It turns out that the conditions in (ii) hold if and only if K is order-preservingly isomorphic
to a subfield of the real numbers.

The Line-Circle and Two Circle Properties

As noted in Section III.6 of the course notes, the classical results in Euclidean geometry
(including straightedge-and-compass constructions) require the two results on intersections of circle
with a line or another circle named in the heading above; both are implicit in the Elements but not
stated explicitly. The proofs of these results in the course notes rely on the fact that every positive
real number has a positive square root (which is also a real number). In fact, the arguments in
Section III.6 go through if we have a system with coordinates in a Pythagorean ordered field which
also satisfies the commutative law of multiplication and the condition in the following definition:

Definition. A Pythagorean ordered field K is said to be surd-complete if every positive element
of K has a positive square root in K.

In fact, the validity of the Line-Circle and Two Circle Properties turns out to be equivalent to
the surd-completeness of K.
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Of course, the real number system is surd-complete. Also, Sections 19.6–19.7 and 31.2 of Möıse
describe a countable subfield Surd of the real numbers which is surd-complete and is in fact the
unique minimal surd-complete subfield of the real numbers. This field also has the following basic
property (not stated or used explicitly in Möıse, but closely related to the results on the “impossible”
classical construction problems); it is an elementary exercise to derive this from material on field
extensions in introductory graduate level algebra courses.

PROPOSITION. Let α be a nonzero element of the surd field Surd. Then there is a unique
nonzero monic polynomial p(x) with rational coefficients such that the following hold:

(i) The surd α is a root of p.

(ii) If q is a nonzero polynomial with rational coefficients such that q(α) = 0, then q is a
multiple of p (hence the degree of p is minimal among all polynomials for which α is a root).

(iii) The degree of p is a power of 2.

The results in Chapter 19 of Möıse show that a classical construction problem can be done by
means of straightedge and compass construction if and only if the following holds:

If we begin with points, lines, and circles whose defining equations only involve elements
of Surd, then the defining numerical data for the constructed objects also lie in Surd. —
More generally, if the original data lie in an ordered field F which is surd-complete, then
the defining numerical data for the constructed objects also lie in F.

We have already noted that an ordered field must be surd-complete in order to carry out the
classical geometrical discussion of circles and constructions. By definition, a surd-complete field is
automatically Pythagorean, and further consideration yields the following:

THEOREM. Suppose that we are given a plane or 3-space E which satisfies all the Hilbert
axioms except (perhaps) the Dedekind Continuity Axiom and has coordinates given by the ordered
Pythagorean division ring K. Then the following are equivalent:

(i) The Line-Circle and Two Circle Properties are valid in the plane or space E.

(ii) The ordered division ring K is surd-complete.

As noted in the final paragraph on page 131 of Greenberg, it is possible to construct an
Archimedean ordered field K which is Pythagorean but not surd-complete, and from this one
can conclude that it is impossible to prove the Two Circle Property from Hilbert’s axioms of
incidence, betweenness and congruence, even if one also assumes the coordinate field K satisfies
the Archimedean Property .

As suggested by the discussion on pages 129–131 of Greenberg, this result implies that the
very first proposition in Euclid’s Elements (the existence of an equilateral triangle with a given line
segment as one of its edges) cannot be proved without making some additional assumption like
the Two Circle Property.

Numberless non-Euclidean geometry

A central theme in Greenberg’s book is to do as much of neutral and non-Euclidean geometry
as possible without using the full force of the Dedekind Continuity Axiom, and one objective of
Appendix B in Greenberg is to describe coordinates in systems which satisfy all of Hilbert’s axioms
except perhaps the Dedekind Continuity Axiom or the Parallel Postulate (or both). Greenberg
then discusses ways in which such coordinate systems can shed light on some basic questions about
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these geometric systems; the latter involves several ideas well beyond the advanced undergraduate
level, and because of this many parts of the exposition reflect the need to be sketchy and vague
about various points.

In connection with this discussion of non-Euclidean geometry without the real numbers, it
seems appropriate to summarize the other locations throughout the book which discuss the conse-
quences of assuming everything but the Parallel Postulate or Dedekind Continuity.
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Page(s) Topic(s)

129 Definition of a Hilbert plane (i.e., satisfying Hilbert’s axioms except
possibly either the Parallel Postulate or Dedekind Continuity.

161–162 Statement that a Hilbert plane is the default setting for Chapter 4.

173 Statement of the converse to the Triangle Inequality for Hilbert planes
satisfying the Two Circle Property.

175 Theorems on the role of the Parallel Postulate in a Hilbert plane.

176–191 Proofs of analogs to the results in Section V.3 of the course notes in
Hilbert planes for which the Parallel Postulate does not necessarily
hold; there are comments on the role of the Archimedean Property at
the end, including a reference for an example of a Hilbert plane in
which the angle sum of a triangle always exceeds 180◦.

200 Exercise 33 discusses some issues about Hilbert planes for which the
Archimedean property does not hold.

213–214 The logical equivalence (in Hilbert planes) of the Parallel Postulate and
the axiom of C. Clavius (1538–1612) — namely, that parallel lines are
everywhere equidistant — is discussed.

220–221 A version of an observation due to Proclus Diadochus (410–485) for
Hilbert planes is stated and proved.

249–254 Proofs of analogs to the results at the beginning Section V.4 of the notes
(through AAA congruence) are given for non-Euclidean Hilbert planes.

254–259 The behavior of parallel lines in non-Euclidean Hilbert planes (either
asymptotic or having a common perpendicular) is discussed; this is
closely related to the final parts of Section V.4 in the course notes.

408–409 The geometric symmetries (automorphisms in Greenberg) of a Hilbert
plane are defined and discussed, and the significance of the Archimedean
property is mentioned.

471 Exercise 69 fills in some details for the discussion on pages 408–409.

571–596 This is Appendix B.

599–601 This summarizes the axioms for geometric and algebraic systems which
are central to Greenberg’s book.
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Final remarks

The construction of Hilbert’s Field of Ends (in Part I of Appendix B) reflects the relationship
between hyperbolic geometry and projective geometry that is apparent in the Beltrami-Klein model
for the hyperbolic plane (see Greenberg, pages 333–346). One way of describing this relationship is
described below (this requires concepts from projective geometry and can be skipped if the reader
wishes to do so):

If we view the Beltrami-Klein model Hyp as the open unit disk in R
2 and take the usual

extension of R
2 to the projective plane RP

2, then the points of the latter which do not lie in Hyp

may be viewed as points at infinity where various pencils of parallel lines in Hyp meet. The ideal
points for asymptotically parallel lines are the points on the circle which is the boundary of Hyp

in R
2. Using this, it is possible to interpret some crucial properties of the real number system

(arithmetic operations and order) in terms of the geometry of Hyp. This process can be imitated
in an arbitrary Hilbert plane as follows: A general result of A. N. Whitehead shows that every 3-
dimensional system satisfying the axioms of incidence and betweenness has a reasonable embedding
inside a projective 3-space over an ordered division ring; for the sake of completeness we shall give
the reference:

A. N. Whitehead. The Axioms of Descriptive Geometry . Cambridge Univ. Press,
New York, 1905. [The cited results appear in Chapter III. — This book is freely available
on the Internet via a Google Book Search; the online address is much too long to fit on
a single line, but one can get the link by doing a Google search for whitehead axioms

descriptive geometry.]

Not surprisingly, the coordinates obtained in this manner turn out to be equivalent to the coordi-
nates given by Hilbert’s construction.

It is also possible to find reasonable embeddings of certain incidence geometries inside projective
spaces even if one does not have a concept of betweenness. The following paper are basic references:

S. Gorn. On incidence geometry . Bulletin of the American Mathematical Society 46

(1940), 158–167.

O. Wyler. Incidence geometry . Duke Mathematical Journal 20 (1953), 601–601.
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Addendum A: Finite affine and hyperbolic planes

At the end of Section II.1 in the course notes there is a discussion about abstract geometrical
systems which are finite and satisfy the standard Incidence Axioms. Clearly one can also consider
finite incidence geometries in which either the Euclidean Parallel Postulate or some negation of it
holds. For example, one might assume the strongest possible negation (the Strong or Universal

Hyperbolic Parallel Postulate:

Given a point x and a line L not containing x, then there are at least two lines M and N

through x which do not meet L.

As in the main discussion above, we shall first discuss finite planes for which the Euclidean Parallel
Postulate holds, and afterwards we shall discuss finite planes in which various negations of the
Euclidean Parallel Postulate hold.

Finite affine planes

If we define a finite affine plane to be a finite (incidence) plane in which the Euclidean Parallel
Postulate holds, the following two questions arise immediately:

1. Do the defining conditions yield interesting consequences? In particular, one would like to
have results which are fairly simple to state but not immediately obvious from the original
assumptions.

2. Do such systems arise in contexts of independent interest? (Compare the remark by J.
L. Coolidge, quoted on page 35 of the course notes, in document geometrynotes2a.pdf:
The unproved postulates ... must be consistent, but they had better lead to something
interesting .)

The following simple result suggests an affirmative answer to the first question:

THEOREM. Let (P,L) be a finite incidence plane. Then the following hold:

(i) The number of points in P is a perfect square (which must be at least 4 since P has at
least three points).

(ii) If the positive integer n ≥ 2 is such that P has n2 points, then every line in P contains
exactly n points, and every point in P lies on exactly (n + 1) lines.

A reference for this result is Exercise 7 on page 33 of the following document:

http://math.ucr.edu/∼res/progeom/pgnotes04.pdf

If GF(n) is a finite field with n elements (for example, we can take GF(p) to be Zp if p is a prime),
then the coordinate plane GF(n)2 with the usual lines (namely, all subsets of the form x+V where
x is an arbitrary vector and V is an arbitrary 1-dimensional vector subspace) is an affine plane
with n2 elements; standard results from (graduate level) abstract algebra courses imply that such
fields exist if and only if n is a prime power.

In many important respects, affine geometry — and particularly finite affine geometry — is
best viewed as part os projective geometry (see Unit IV of the notes), and in particular the usual
approach to finite affine planes is to construct associated finite projective planes using the methods
of pages 47–48 and 62–65 of the following document:

http://math.ucr.edu/∼res/progeom/pgnotes03.pdf
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Finite projective planes have been studied extensively and effectively during the past 100 years
or so, and they turn out to have important practical uses in mathematical statistics, especially in
the theory of experimental design. Further discussion and references are given on pages 37–39 of
the course notes and on pages 79–82 and 84–86 of the previously cited online document ... pg-

notes04.pdf; the book by Bose in the bibliography is an important reference for the applications
of finite projective planes and related structures.

Finite hyperbolic planes

Since there is a fairly extensive theory of finite affine and projective planes, it is natural to
speculate about finite analogs of hyperbolic planes. This topic has beens studied sporadically and
only to a limited extent, and the literature is somewhat scattered. Therefore the following summary
almost surely overlooks some work on this question.

The most näıve and obvious approach to defining a finite non-Euclidean plane is to say it is a
finite plane which does not satisfy the Euclidean Parallel Postulate. However, as in the preceding
discussion of finite affine planes, there are immediate questions regarding the logical consequences of
such a definition or the existence of models which are relevant to questions of independent interest.
It is possible to go even further and ask whether the given definition is enough by itself to yield
structures which are worth studying in some degree of detail, but we shall not try to address this
question because it gets into subjective (but nevertheless important!) considerations.

BASIC CONSEQUENCES AND EXAMPLES. We shall begin by deriving a simple but noteworthy
property of non-Euclidean planes:

PROPOSITION. Let (P,L) be a finite incidence plane in which there is a line L and a point
C 6∈ L such that there are at least two parallels to L through C. Then P contains (at least) four
points, no three of which are collinear.

Proof. Let A and B be two points of L, and let C be as above. Choose D and E such that CD

and CE are distinct lines which are parallel to L = AB (such lines exist by the hypothesis). We
claim that the points A,B,C,D,E are distinct; certainly the first three are because C 6∈ AB, while
the conditions on D and E also imply that neither of these points can be A, B or C, and D 6= E

because CD 6= CE. It will suffice to prove that {A,B,C,D,E} contains four points, no three of
which are collinear.

There are exactly 10 subsets of {A,B,C,D,E} which contain exactly 3 elements, and they
may be listed as follows:

{A,B,C}
{A,B,D}
{A,B,E}
{A,C,D}
{A,C,E}
{A,D,E}
{B,C,D}
{B,C,E}
{B,D,E}
{C,D,E}

Since C 6∈ L = AB, we know that {A,B,C} is noncollinear. Also, both {A,B,D} and {A,B,E}
are noncollinear because AB ∩ CD = AB ∩ CE = ∅ by assumption. Similarly, the sets {A,C,D}
and {A,C,E} are not collinear for the same reason, and likewise for {B,C,D} and {B,C,E}. In a
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different direction, CD 6= CE implies that {C,D,E} must be noncollinear. Therefore, by process
of elimination we see that the only three point subsets of {A,B,C,D,E} which might be collinear
are {A,D,E} and {B,D,E}.

Since neither of these subsets is contained in {A,B,C,D} or {A,B,C,E}, it follows that each
of the latter is a subset of P containing four points, no three of which are collinear.

Note. It is easy to construct examples of (finite) planes which do not contain a subset of
four or more noncollinear points such that every subset of three points is collinear (if every subset
of three points in X ⊂ P is collinear, it is a straightforward exercise to prove that X is collinear).
The most obvious example of this sort is a plane with three points such that the lines are all subsets
containing exactly two points, but we can also construct examples with any finite number of points
as follows: Given an integer n ≥ 3, let P = {0, 1, · · · , n} and take L to be the family of all subsets
{0, k} where k > 0 together with {1, · · · , n}. It is then a routine exercise to verify that (P,L) is an
incidence plane, and since every subset with four or more points must contain at least three points
in {1, · · · , n}, it follows that if X is a (noncollinear) subset of P containing 4 or more points, then
there is a collinear subset of X which contains 3 points.

We have already raised questions whether the negation of the Euclidean Parallel Postulate is a
strong enough assumption to yield a significant body of noteworthy results, and we have suggested
the option of assuming the Universal Hyperbolic Parallel Postulate. Before doing so, we shall give
examples of finite non-Euclidean planes which do not satisfy the Universal Hyperbolic Parallel
Postulate. The basic idea is simple; namely, we take an affine plane (P,L) in which all lines have
at least three points, and we remove a line L0 from P.

Formally, if (P,L) is an affine incidence plane as above, let L0 be a line in P, and set Q

equal to P−L0. Now let M0 be a second line in P which meets L0 ar some point z0. If z1

and z2 are two distinct points of M0 other than |bfz
0
, then z1 and z2 lie on distinct lines

of L1 and L2 in P such that L1||L0 and L2||L0, and we claim that L2 ∩ Q is the unique
line in Q which contains bfz2 and is disjoint from L1 ∩ Q. It follows immediately that
z2 ∈ L2 ∩ Q (if not, then z2 ∈ L0, so that z2 ∈ L0 ∩ M = {z0}, contradicting z2 6= z0),
and clearly L1 ∩Q||L2 ∩Q because L1||L2. To prove uniqueness, we must show that if K

is a line in Q such that z2 ∈ K and K||L1 ∩ Q, then K = L2 ∩ Q.

Suppose that K = K ′capQ is such that z2 ∈ K and K||L1 ∩ Q. If K ′ ∩ L1 = 0, then
K ′ = L2 because P is affine, so that K = L2 ∩ Q. On the other hand, if K ′ ∩ L1 6= ∅,
then the intersection must lie in L0. But this implies that L1 ∩ L0 is also nonempty,
contradicting the choice of L1 as a line parallel to L0. This proves that K ′ = L2 and
K = L2 ∩ Q.

Now let w0 be a second point of L0, let M1 be the unique parallel to M0 through w0, and
let w1 be a second point on M1, so that M1 ∩ L0 = {w0}. Then Q ∩ M1 and Q ∩ z0w1

are two lines in Q which pass through w1 and do not meet Q ∩ M0.

THE MINIMALITY PROPERTY. Even if we assume the Universal Hyperbolic Parallel Postulate,
there are some “bloated” examples that fit the formal criteria but are really “too big” to be thought
of as planes. For example, if (S,L,P) is an affine 3-space, then at least formally we can make S

into an incidence plane by simply decreeing that S is a plane and ignoring the family P. It follows
immediately that (S,L) is an incidence plane.

CLAIM. The system (S,L) satisfies the Universal Hyperbolic Parallel Postulate.

Proof of Claim. Let L be a line and let x be a point of S not on L. Then there is a unique
parallel M to L through x in the affine 3-space (S,L,P). Let Q ∈ P be such that L ⊂ Q and
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x ∈ Q. Since Q is a proper subset of S, we can find some point y in S which does not lie in Q.
It will suffice to prove that xy and L have no points in common. If there was some point z on
both, then x, z ∈ Q would imply that the line joining them — which is xy — would also lie in Q,
contradicting our choice of y. Therefore xy and M are two lines through x which are disjoint from
L.

Still more examples of this type can be constructed by letting P = F
n, where F is a finite

field and n ≥ 4. As in the preceding examples, these systems have higher dimensional incidence
structures that are described on pages 31–36 of the following document:

http://math.ucr.edu/∼res/progeom/pgnotes02.pdf

Clearly we have turned higher dimensional incidence structures into planes by the formal trick of
simply ignoring all higher dimensional structure. One way to avoid such questionable constructions
is to assume an additional property. It will be convenient to formulate this in terms of an auxiliary
concept:

Definition. Let (P,L) be an incidence plane. A subset Q ⊂ P is flat if for each pair of distinct
points x 6= y in Q, the line joining them is contained in Q. There is an obvious close relationship
between this condition and one of the 3-dimensional incidence axioms.

Definition. An incidence plane (P,L) is said to be minimal or irreducible provided the only
noncollinear flat subset of P is P itself. We shall say that (P,L) is reducible if this condition does
not hold.

Clearly all of the “bloated” examples are reducible; in fact, if we are given three noncollinear
points in one of them, then the “plane” containing them (in the sense of the full incidence structure)
is a proper, noncollinear, flat subset.

Before proceeding, we should note that, with one exception, all finite affine planes are irre-
ducible and, with no exceptions, all finite projective planes are irreducible.

THEOREM. Let (P,L) be a finite incidence plane which is either a projective plane or an affine
plane with more than 4 points. Then (P,L) is irreducible.

It is fairly straightforward to show that two affine planes with exactly 4 points have isomorphic
incidence structures (the lines are the two point subsets in this case), and if we combine this with
the conclusion of the theorem we see that, up to incidence isomorphism, there is exactly one affine
incidence plane which is reducible (the 4 point model turns out to be reducible, for every line
contains exactly two points, and therefore every subset of this model is flat in the sense of the
definition).

Proof. Clearly there are two cases, depending upon whether the plane is projective or affine.
We recall that a projective plane is one such that every pair of lines has a point in common, and
every line contains at least three points. Some basic properties of such objects are established in
the previously cited document ... pgnotes04.pdf.

Suppose first that (P,L) is projective, and let Q be a flat, noncollinear subset of P. Let A,B,C

be noncollinear points in Q, and let X ∈ P. If X ∈ AB or X ∈ BC then by flatness we know that
X ∈ Q, so suppose that X lies on neither line. It follows that the line XC is distinct from the line
AB, and hence it meets the latter in some point D; the points C and D are distinct, for otherwise
the two distinct points B and C = D would lie on the two distinct lines AB and AC. We know
that D ∈ Q because D ∈ AB, and therefore we can conclude that the line CD = XC is contained
in Q. But this means that X ∈ Q; therefore we have shown that Q contains every point of P , and
hence we have Q = P.
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The preceding argument also works in the affine case provided the lines AB and CX have a
point in common, and hence in affine case we can say that a point X ∈ P lies in Q except perhaps
if X lies on the unique line L through C such that AB||L. If we switch the roles of A and C in this
argument, we also see that a point X ∈ P lies in Q except perhaps if X lies on the unique line M

through A such that BC||L. Combining these, we see that a point X ∈ P lies in Q except perhaps
if X ∈ L∩M . The lines L and M are distinct because one is parallel to AB and the other contains
a point of AB, and therefore we have shown that Q contains all but at most one point of L ∩ M .
We should note that these two lines do have a point in common, for if they did not then both lines
would be parallel to the nonparallel, nonidentical lines AB and BC, and this is impossible in an
affine plane. We shall denote this point by E.

At this step of the argument we shall finally use the assumption that each line in P contains
more than two points. The point E is the only point of P which might not be in Q. We know that
E ∈ L, so it will suffice to show that at least two points of L are contained in Q. By construction,
we have C ∈ L∩Q, and the assumption on the order of P implies that there is a point Y ∈ L such
that Y 6= X,C. Our reasoning thus far implies that Y ∈ Q, and therefore the flatness assumption
implies that the entire line L is contained in Q; therefore E ∈ Q, so we have shown that every point
of P lies in Q.

Drawings to accompany this proof are posted in the following file:

http://math.ucr.edu/∼res/math133/irreducibleplanes1.pdf

To motivate the concept of irreducibility further, we shall also sketch a proof that

every Hilbert plane is also irreducible.

In fact, all that one needs to prove irreducibility are the Axioms of Incidence and Order (Between-
ness and Plane Separation). An illustrated proof is given in the following online document:

http://math.ucr.edu/∼res/math133/irreducibleplanes2.pdf

In view of the preceding observations, we shall define a finite (synthetic) hyperbolic plane to
be an incidence plane which is irreducible and satisfies the Universal Hyperbolic Parallel Postulate.
One example (in fact, the smallest possible such system) satisfying these conditions is given in the
extremely readable paper by L. M. Graves which is cited in the Bibliography. This model contains
13 points and 26 lines.

Additional examples, often satisfying stronger versions of the Universal Hyperbolic Parallel
Postulate (specifically, how many parallels exist through a given point) and other desirably geo-
metric conditions (for example, symmetry properties), appear in numerous other articles, including
the 1963 paper by R. Sandler, the 1964 and 1965 papers by D. W. Crowe, the 1965 paper by M.
Henderson, and the 1970 paper by S. H. Heath. Still further results along these lines appear in the
1971 paper by R. Bumcrot, which also establishes some restrictions on the numerical data of finite
hyperbolic planes.

Examples like the preceding ones are informative in several respects, but ultimately one would
like examples which are relevant to other geometrical topics of independent interest. In many cases,
the outside interest arises from properties of the Beltrami-Klein model and the role of hyperbolic
geometry in a setting of F. Klein (the Erlangen Program), which was designed to provide a unified
framework for the various types of geometry that existed when it was formulated in 1870–1872.
Here is an online reference describing Klein’s influential views and their impact, followed by a link
to an English translation of Klein’s original paper:

http://en.wikipedia.org/wiki/Erlangen program
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http://www.ucr.edu/home/baez/erlangen/erlangen tex.pdf

The place of hyperbolic geometry in this organizational scheme is easy to describe. Namely, the
Beltrami-Klein model for hyperbolic geometry provides the basis for integrating hyperbolic geom-
etry into Klein’s framework.

Some very brief papers around 1940 suggested that there might not be any finite analogs of
the classical hyperbolic plane aside from some trivial ones. The subsequent 1946 paper by R. Baer
was another early (and discouraging) step in the search for “extrinsically motivated” examples of
finite hyperbolic planes. On the other hand, the 1962 paper by T. G. Ostrom produced examples
similar to Graves’ which in many respects reflected the role of classical hyperbolic geometry in
Klein’s Erlangen Program; a crucial link between Ostrom’s paper and Klein’s viewpoint is studied
in the 1955 paper by B. Segre. Other articles in this direction include the 1965 and 1966 papers by
Crowe, the 1966 paper by R. Artzy, and the 1969 paper by G. I. Podol’ny̆ı; the highly symmetric
examples of finite hyperbolic planes in previously cited articles are also closely related to Klein’s
Erlangen Program.

We could go into greater detail about results from the individual articles listed below, but to
keep the discussion relatively brief we shall merely conclude by mentioning the 1977 survey by J.
Di Paola, which discusses finite hyperbolic planes in the more general context of finite geometries.
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