UNIQUENESS FOR PLANE SEPARATION

Given a plane P and a line $L \subset P$, the plane separation postulate states that $P-L$ is a union of two disjoint convex subsets H_{1} and H_{2} with the following additional property:

$$
\text { If } x_{1} \in H_{1} \text { and } x_{2} \in H_{2} \text {, then there is some point } y \in L \text { such that } x_{1} * y * x_{2} \text {. }
$$

We shall prove the following uniqueness result:
Theorem. Suppose that we have two decompositions $\left\{H_{1}, H_{2}\right\}$ and $\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}$ of $P-L$ which satisfy the conditions of the plane separation postulate. Then $\left\{H_{1}, H_{2}\right\}=\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}$.

There is a similar result for uniqueness in the space separation postulate; the formulation of proof of the latter theorem are left to the reader.

Proof. It suffices to show that either $H_{1} \subset H_{1}^{\prime}$ and $H_{2} \subset H_{2}^{\prime}$ or else $H_{1} \subset H_{2}^{\prime}$ and $H_{2} \subset H_{1}^{\prime}$. In fact, it suffices to consider the first case, for the second will then follow by switching the roles of H_{1}^{\prime} and H_{2}^{\prime}. This is true because we know that $P-L$ is a union of the disjoint subsets H_{1} and H_{2}, and it is also the union of the disjoint subsets H_{1}^{\prime} and H_{2}^{\prime}, for we can switch the roles of the primed and unprimed variables to conclude $H_{1} \supset H_{2}^{\prime}$ and $H_{2} \supset H_{1}^{\prime}$.

Again interchanging roles of the variables, we need only show that $H_{1} \subset H_{1}^{\prime}$ or $H_{1} \subset H_{2}^{\prime}$. Let $p \in H_{1}$; then either $p \in H_{1}^{\prime}$ or $p \in H_{2}^{\prime}$. Once again reversing the roles of variables if necessary, we reduce to considering the case where the first alternative holds.

Since no points of L are in any of the sets $\left\{H_{1}, H_{2}, H_{1}^{\prime}, H_{2}^{\prime}\right\}$, we must have

$$
H_{1}=\left(H_{1} \cap H_{1}^{\prime}\right) \cup\left(H_{1} \cap H_{2}^{\prime}\right)
$$

so it suffices to show that the second summand on the right is empty. Suppose it is not, and let q be a point in this intersection. If we apply the plane separation postulate to $\left\{H_{1}^{\prime}, H_{2}^{\prime}\right\}$ we then find that there is a point $z \in L$ such that $p * z * q$. Since $p, q \in H_{1}$ and the latter is convex, it also follows that $z \in H_{1}$; this is a contradiction because the sets L and H_{1} are disjoint by hypothesis. The source of the contradiction was our supposition that $H_{1} \cap H_{2}^{\prime}$ was nonempty, so the latter is false and the intersection must indeed be empty..

