HYPERPLANE SEPARATION AND VECTOR ALGEBRA

This is a generalization of the concepts and results in separation.pdf.
The main result is the following: If $P \subset \mathbb{R}^{n}$ is a hyperplane, then the set of points not on P is a union of two sets H_{+}and H_{-}which are nonempty convex subsets such that if $x \in H_{+}$and $y \in H_{-}$, then the open segment ($x y$) contains a point of P.
The case $n=3$ of this statement is the space separation posbulate in the notes. The proof of this result proceeds as in the prior document with \mathbb{R}^{n} replacing \mathbb{R}^{2} and the equation $\sum a_{j} x_{j}=b$ defining the hyperplane P. The two half spaces will be defined by $\sum a_{j} x_{j}>b$ and $\sum a_{j} x_{j}<b$.
A typical problem involving this property would involve a finite set of points $c_{1}, \ldots, c_{i}, \ldots$ with coordinates $c_{i, j}$. Determining which points lie on H_{+}, P and H_{-}amounts to determining whether the sums $\sum_{j} a_{j} c_{i, j}$ are greater than, equal to, or less than b.

