HYPERPLANE SEPARATION AND VECTOR ALGEBRA

This is a generalization of the concepts and results in separation.pdf.

The main result is the following: If $P \subset \mathbb{R}^n$ is a hyperplane, then the set of points not on P is a union of two sets H_+ and H_- which are nonempty convex subsets such that if $x \in H_+$ and $y \in H_-$, then the open segment (xy) contains a point of P.

The case n = 3 of this statement is the space separation postbulate in the notes. The proof of this result proceeds as in the prior document with \mathbb{R}^n replacing \mathbb{R}^2 and the equation $\sum a_j x_j = b$ defining the hyperplane P. The two half spaces will be defined by $\sum a_j x_j > b$ and $\sum a_j x_j < b$.

A typical problem involving this property would involve a finite set of points $c_1, ..., c_i, ...$ with coordinates $c_{i,j}$. Determining which points lie on H_+ , P and H_- amounts to determining whether the sums $\sum_j a_j c_{i,j}$ are greater than, equal to, or less than b.