
The distance between two skew lines

We shall use vector geometry to prove the following basic result on skew lines; i.e., lines in
R

3 which have no points in common but are not parallel (hence they cannot be coplanar).

THEOREM. Let L and M be two skew lines in R
3, and for x ∈ L and y ∈ M let d(x,y) denote

the distance between x and bf y. Then the function d(x,y) takes a positive minimum value, and if

xm and ym are points where d(x,y) is minimized, then the line joining xm and ym is perpendicular

to both L and M .

In classical Euclidean geometry this is usually stated in the form, “The shortest distance
between two skew lines is along their common perpendicular.” Not surprisingly, it is possible to
prove this result using the methods of classical synthetic geometry, and nearly all the textbooks on
solid geometry from the first two thirds of the 20th century contain proofs of this result.

We shall use the results on the cross product a × b and triple product [a,b, c] (from Section
I.2 of the course notes) at several points in the proof of the theorem.

Proof. There are three main parts to the argument:

(1) Proving that the distance function has an absolute minimum; under the hypotheses, we
know that this minimum distance must be positive.

(2) Deriving an algebraic formula for the minimum distance.

(3) Showing that the the minimum value is realized by points xm and ym such that the line
xm ym is perpendicular to both L and M .

FIRST STEP. We begin by translating the problem into a question about vectors. Suppose that
the skew lines have parametric equations of the form

p0 + tu , p1 + sv

where u and v are nonzero and in fact must be linearly independent; for if u and v are linearly
dependent then the two lines described above are identical or parallel. In effect the problem is to
show that the function f(s, t) = | r(s, t) |2, where

r(s, t) =
(

p0 + tu
)

−
(

p1 + sv
)

has a minimum value and to find that value.

As noted above, we shall begin by proving that there is a minimum value. If we write out the
conditions for a point to satisfy ∇f(s, t) = 0 we obtain the following system of linear equations,
where A and B are some constants.

t 〈u, u〉 − s 〈u, v〉 = A

t 〈u, v〉 − s 〈v, v〉 = B

These equations have a unique solution because the determinant
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is nonzero by the Schwarz inequality and the linear indepdendence of u and v. Let R > 0 be so
large that the solution (s∗, t∗) lies inside the circle s2+t2 = R2. Then on the set s2+t2 ≤ R2 either
the minimum value occurs at the unique critical point or else it occurs on the boundary circle. Let
D be the value of the function at the critical point, so that D ≥ 0. If D is not a minimum value
for f(s, t) then for every Q > R there is a point on the circle s2 + t2 = Q2 for which the value
of the function is less than D. We claim this is impossible, and it will follow that D must be the
minimum value of the function.

Consider the values of the function f on the circle of radius ρ; these are given by

| r ( ρ cos θ, ρ sin θ ) |2

and if we write everything out explicitly we obtain the following expression for this function, in
which q is the vector p0 − p1:

ρ2 | cos θ u − sin θ v|2 + 2 ρ 〈cos θu− sin θ v, q〉 + |q|2

Let k denote the minimum value of | cos θ u− sin θ v| for θ ∈ [0, 2π] and let K denote the maximum
value. Since u and v are linearly independent, the displayed expression is always positive and
therefore k must be positive. We claim that the minimum value of f(s, t) on the circle s2 + t2 = ρ2

is greater than or equal to the following expression:

ρ2 k2 − 2 ρK |q| + |q|2

This follows immediately from the inequalities

ρ2 | cos θ u− sin θ v|2 ≥ ρ2 k2

2 ρ 〈cos θu− sin θ v, q〉 ≥ − 2ρ | cos θ u− sin θ v| · |q| ≥ 2 ρK |q|

where the first inequality in the second line comes from the Schwarz inequality.

Since
lim

ρ→∞

ρ2 k2 − 2 ρK |q| + |q|2 = +∞

it follows that all sufficiently large ρ the minimum value of f(s, t) on the circle s2+t2 = ρ2 is strictly
greater than D, and therefore D must be the absolute minimum for f on the set s2 + t2 ≤ ρ2 for
all sufficiently large ρ. But this means that D must be the absolute minimum for the function over
all possible values of s and t.

SECOND STEP. In order to find a point where the minimum value is attained one needs to set
the partial derivatives of f with respect to a and t both equal to zero. If we do this we obtain the
following equations:

0 = 2 r(s, t) · (−v)

0 = 2 r(s, t) · ( u)

Since u and v are linearly independent, this minimum occurs when r(s, t) a scalar multiple of u×v.
Suppose that the minimum is attained at parameter values (s0, t0). Then we have r(s0, t0) = k u×v

for some scalar k, and it follows immediately that the minimum distance d satisfies

d =

∣

∣

[

u,v, r(s0, t0)
] ∣

∣

|u× v|
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where [a,b, c] refers to the usual triple product of vectors having the form (a×b) · c = a · (b× c).
We claim that a similar formula holds with r(0, 0) = p0 = p1 replacing r(s0, t0). This is true
because

r(0, 0) = r(s0, t0) + t0 u − s0 v0

which implies that the triple products [u,v, r(s0, t0)
]

and [u,v, r(0, 0)
]

are equal. This proves the
formula in its usual form

d =

∣

∣

[

u,v, r(0, 0)
]

∣

∣

|u× v|

if one assumes that the function f(s, t) does attain a minimum value.

THIRD STEP. This follows fairly quickly from the argument in the second step. Let xm and ym

be the points where d(x,y) is minimized, and write

xm + tm u , ym + sm v

for suitable scalars tm and sm. Then |r(sm, tm)| and |r(sm, tm)|2 are the minimum values of the
respective functions, and therefore by the first part of the proof for the second step we know that

0 = 2 r(sm, tm) · (−v)

0 = 2 r(sm, tm) · ( u)

Since r(sm, tm) = xm−ym, these equations imply that the line joining xm and ym is perpendicular
to both L and M .
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Some pictures of skew lines 
 

 
 

(Source: http://intermath.coe.uga.edu/dictnary/descript.asp?termID=424 ) 

 

Think of the solid rectangular box as the set of all points (x, y, z) such that x lies between 

0000 and a,  y lies between 0000 and b, and z lies between 0000 and c, where a, b and c are all 
positive real numbers.  Then the line indicated by arrows in the bottom plane is the one 

joining the vertices (0000, b, 0000) and (a, 0000, 0000), while the line indicated by arrows in the top 

plane is the one joining the vertices (0000, 0000, c) and (a, b, c).  To see that the two lines are 
skew lines, it is enough to show that there is no plane containing these four vertices.   

But if such a plane existed then the points would satisfy an equation Px+Qy+Rz = K for 

some P, Q, R, K where not all of the first three numbers are zero, and if we substitute 

the previous four points into this equation we get Qb=K=Pa=Rc=Pa+Qb+Rc.  If this 

system has a solutions then adding the first three equations yields K=Pa+Qb+Rc=3K, 

which means that K = 0000; this and the original system imply that  a, b, c must all be zero.  
Since we are assuming all three numbers are positive, it follows that no plane contains 
the given four points. 
 
Note that the two lines have a common perpendicular which is a vertical line through the 
center of the rectangular solid. 
 
 
Yet another example of the same type appears on the next page. 



 
 

 
 

(Source: http://www.dummies.com/how-to/content/getting-to-know-lines.html ) 
 

In this case the line on the lower face passes through (0000, 0000, 0000) and (a, 0000, 0000), while the 

line on the upper face passes through (a, 0000, c) and (a, b, c).  An argument like the 
preceding one shows that these four points are not coplanar.  The details of checking 
this out are left as an exercise.   In this case, the common perpendicular is the vertical 

line passing through (a, 0000, c) and (a, 0000, 0000). 


