The angle sum of a triangle

This is a slightly shorter alternate proof of the following basic result:
Theorem III.2.13. Given $\triangle \mathrm{ABC}$ in a Euclidean plane, we have the equation

$$
|\angle A B C|+|\angle B C A|+|\angle C A B|=180^{\circ} .
$$

Proof. We shall prove this using the setting of the Exterior Angle Theorem (= Theorem III.2.1). In the proof of the later result, \mathbf{D} is a point such that $\mathbf{B} * \mathbf{C} * \mathbf{D}$, while E is the midpoint of [AC] and F is chosen such that E is the midpoint of [BF]. The proof then shows that $|\angle B A E|=|\angle E C F|$ and F lies in the interior of $\angle A C D$.

Since we know that $\mathbf{B} * \mathbf{E} * \mathbf{F}$ and $\mathbf{A} * \mathbf{E} * \mathbf{C}$, it follows that \mathbf{B} and \mathbf{F} lie on opposite sides of the line $A C$, so that $|\angle B A E|$ and $|\angle E C F|$ are alternate interior angles for the transversal AC. If we combine this with $|\angle B A E|=|\angle E C F|$, we can use Proposition III.2.10 to conclude that AB || CF. But the betweenness conditions at the beginning of this paragraph also imply that \mathbf{A} and \mathbf{F} are on the same side of $\mathbf{B C}$, and therefore by Corollary III.2.12 and $\mathbf{A B}|\mid C F$ it follows that $| \angle A B C \mid=$ $|\angle F C D|$ (the two angles in this equation are corresponding angles for the transversal $B C)$.
Since F lies in the interior of $\angle A C D$, we have $|\angle A C D|=|\angle A C F|+|\angle F C D|$; also, since $|\angle A C F|=|\angle B A C|$ and $|\angle F C D|=|\angle A B C|$, we may rewrite the equation in the first part of this sentence as $|\angle A C D|=|\angle B A C|+|\angle A B C|$. But by the Supplement Postulate we also have $|\angle A C B|+|\angle A C D|=180^{\circ}$, and if we combine this with the previous equation we obtain the desired formula

$$
|\angle A B C|+|\angle B A C|+|\angle A C B|=180^{\circ} . \square
$$

