NOTE ON THE TRIANGLE CONGRUENCE AXIOMS

Our purpose here is to prove an assertion made at the beginning of Section II. 4 of the notes; namely, the SAS triangle postulate implies the ASA and SSS postulates. Since this is an assertion about the logical interdependence of synthetic axioms, the proofs of these results must be entirely synthetic.

Proof that SAS implies ASA. Suppose that $|\angle A B C|=|\angle D E F|, d(B, C)=d(E, F)$, and $|\angle A C B|=|\angle D F E|$. If we can show that $d(A, B)=d(D, E)$, then by SAS we have $\triangle A B C \cong \triangle D E F$. We shall suppose that $d(A, B) \neq d(D, E)$ and derive a contradiction. There are two cases depending upon the direction of the inequality.

Suppose that $d(D, E)<d(A, B)$. There is a unique point $G \in(B A$ such that $d(B, G)=d(E, D)$, and since $d(B, G)=d(D, E)<d(B, A)$, we must have $B * G * A$. It follows that G lies in the interior of $\angle A C B$ and $\angle G B C=\angle A B C$. By SAS we have that $\triangle G B C \cong \triangle D E F$. This means that $|\angle G C B|=|\angle D F E|$. On the other hand, since G lies in the interior of $\angle A C B$ it also follows that $|\angle G C B|<|\angle A C B|$. Since we are assuming that $|\angle A C B|=|\angle D F E|$, the preceding sentences combine to show that

$$
|\angle D F E|=|\angle G C B|<|\angle A C B|=|\angle D F E|
$$

which is a contradiction. This means that we cannot have $d(D, E)<d(A, B)$.
Suppose that $d(D, E)>d(A, B)$. We can rule this out by interchanging the roles of A and D, B and E, and C and F in the preceding paragraph.

The preceding paragraphs show eliminate the possibility that $d(D, E) \neq d(A, B)$, so we must have $d(A, B)=d(D, E)$, and as noted above this suffices to prove that $\triangle A B C \cong$ $\triangle D E F$.

In order to prove $\mathbf{S S S}$, we shall need some preparation. Note first that the proof of the Isosceles Triangle Theorem in the notes only uses SAS and ASA, and since the first of these implies the second, it follows that the Isosceles Triangle Theorem is a logical consequence of SAS, and as such we may use it in our derivation of SSS from SAS. Of course, we may also use ASA since we have derived this result from SAS. Next, we observe that the proofs of Proposition III.1.1 and Corollary III.1.2 in the notes are entirely synthetic and do not depend upon the postulates regarding congruent triangles, and therefore we may also use them in proving that SAS implies SSS. On the other hand, we do need to give a synthetic proof for Proposition III.1.7, whose proof in the notes involves the use of vectors.

PROPOSITION. Suppose that we are given points $A \neq G$; let M be the midpoint of $[A G]$, and let B and C be distinct points not on the line $A G$ such that $d(B, A)=d(B, G)$ and $d(C, A)=d(C, G)$. Then $M \in B C$ and $B C$ is perpendicular to $A G$.

Synthetic proof of the proposition. We shall first prove that $B M$ is perpendicular to $A G$. By the Protractor Postulate, there is a ray $[B X$ such that ($B X$ lies on the same side
of $B A$ as G and $|\angle G B X|=\frac{1}{2}|\angle G B A|$. By the Trichotomy Principle we know that ($B X$ must be contained in the interior of $\angle G B A$, and therefore by the Additivity Postulate we have

$$
\begin{aligned}
|\angle A B X| & =|\angle G B A|-\frac{1}{2}|\angle G B X|= \\
|\angle G B A| & -\frac{1}{2}|\angle G B A|=\frac{1}{2}|\angle G B A|
\end{aligned}
$$

We can now apply the Crossbar Theorem to find a point N such that $N \in(B X \cap(A G)$. Since $d(B, A)=d(B, G)$, by SAS we have $\triangle A B N \cong \triangle G B N$. The latter implies two things: First, we have $d(A, N)=d(G, N)$, so that

$$
d(A, G)=d(A, N)+d(A, N)=2 d(A, N)=2 d(G, N)
$$

and hence $d(A, N)=\frac{1}{2} d(A, G)=\frac{1}{2} d(A, M)$; since there is only one point on $(A G)$ satisfying the preceding equations, it follows that M and N must be the same point. Next, we have $|\angle B N A|=|\angle B N G|$. Since $A * N * G$ holds, it follows from the Supplement Postulate that

$$
180^{\circ}=|\angle B N A|+|\angle B N G|=2|\angle B N A|=2|\angle B N G|
$$

and therefore $|\angle B N A|=|\angle B N G|=90^{\circ}$. Finally, since $M=N$, the preceding sentence implies that $B M \perp A G$.

If we replace B by C in the preceding paragraph, we obtain the analogous conclusion that $C M \perp A G$.

To complete the proof we need to show that $B M=C M$. There are two cases, depending upon whether B and C lie on the same or on opposite sides of $A G$. If they lie on the same side, then the Protractor Postulate implies that $[M B=[M C$, which in turn implies that $M B=M C$. On the other hand, if they lie on opposite sides and we choose Y such that $\left[M Y=\left[M B^{\mathbf{O P}}\right.\right.$, then $(M Y$ and ($M C$ lie on the same side of $A G$. By Proposition III. 1 we know that $|\angle Y M A|=90^{\circ}$, and by the previous paragraph we also know that $|\angle C M A|=90^{\circ}$, so by the Protractor Postulate we must have $\left[M C=\left[M Y=\left[M B^{\mathbf{O P}}\right.\right.\right.$. But this means that the lines $M B$ and $M C$ must be the same.

Proof that SAS implies SSS. The idea again is to construct a congruent copy of $\triangle D E F$ which is nicely situated with respect to $\triangle A B C$ and show that this copy must be $\triangle A B C$.

Specifically, first take the ray $(B W$ such that W and A lie on the same side of $B C$ and $|\angle W B C|=|\angle D E F|$, and then take the point $G \in(B W$ such that $d(B, G)=d(E, D)$. We may now apply SAS to conclude that $\triangle G B C \cong \triangle D E F$. If $G=A$ then we have the conclusion to $\mathbf{S S S}$, so suppose that $G \neq A$; we shall derive a contradiction from this.

Since $\triangle G B C \cong \triangle D E F$, it follows that $d(B, G)=d(E, D)=d(B, A)$ and similarly $d(C, G)=d(F, D)=d(A, C)$. By the proposition established above, this means that the midpoint M of $[A G]$ must lie on the line $B C$. On the other hand, since A and G lie on the same side of $B C$, the Plane Separation Postulate implies that the entire segment $[A G]$ lies on one side of $B C$, and thus we have a contradiction. The source of the contradiction is our assumption that $G \neq A$, so we must have $G=A$, and as noted above this implies SSS.■

