Mathematics 133, Fall 2020, Examination 1

Answer Key

1. [25 points] Assume that we are given a line L in the plane P, and also assume that A, B, C, D, E are five distinct points such that no three are collinear. Prove that at least two of these points lie on the same side of L in P. [Note: One or more points might lie on L.]

SOLUTION

Start with the hint. One or even two points may lie on L, but no more can do so because no three points are collinear. Therefore there is a set with 3 to 5 points which do not lie on L. The complement of L consists of two open half-planes H_{+}and H_{-}, and since we have a set with at least three points, at least two of them must lie in one of these half-planes.

Note. This is a special case of the Dirichlet Pigeonhole Principle: *If we have m objects which lie in n subsets such that $m>n$, then at least one subset must contain at least two of the objects.
2. [25 points] (a) Let L and M be two lines in the coordinate plane \mathbb{R}^{2} which meet at a single point. Suppose that a third line N is parallel to L. Show that M and N have a point in common.
(b) Suppose we are given $\angle A B C$ in the coordinate plane \mathbb{R}^{2}, and let L be a line in \mathbb{R}^{2}. Prove that L is not contained in the interior of $\angle A B C$. [Hint: Try to use part (a).]

SOLUTION

(a) Let X be the point where M and L meet. There is only one line through the common point in $L \cap M$ which is parallel to L; the common point X cannot lie on N because L is assumed to be parallel to N. Since L is parallel to N and M is another line passing through X, the Euclidean Parallel Postulate implies that M is not parallel to N, and hence N has a point in common with M.
(b) If L is contained in the interior then L has no points in common with either $A B$ or $B C$. Hence L is parallel to both of the lines $A B$ and $B C$. But both lines pass through the external point B, and the Euclidean Parallel Postulate implies that there is only one line through B which is parallel to L. Therefore L has a point in common with either $A B$ or $B C$ (or both!), which means that L is not contained in the interior of $\angle A B C$.
3. $\quad 25$ points $]$ Suppose that we are given two triangles $\triangle A B C$ and $\triangle D E F$ in \mathbb{R}^{2} such that $\triangle A B C \cong \triangle D E F$. Let $G \in(A C)$ and $H \in(D F)$ such that either $|\angle A B G|=|\angle D E H|$ or $|A G|=|D H|$. Prove that $\triangle G B C \cong \triangle H E F$. [Hint: Draw a picture.]

SOLUTION

We have to handle the two hypotheses separately. However, there is one step that both cases have in common: The betweenness conditions $G \in(A C)$ and $H \in(D F)$ and the congruence assumption imply $|A G|+|G C|=|A C|=|D F|=|D H|+|H F|$. Therefore if $|A G|=|D H|$ then we also have $|G C|=|H F|$.

First Case. Assume first that $|\angle A B G|=|\angle D E H|$. Since the original congruence implies $|A B|=|D E|$ and $|\angle A B C=\angle A B G|=|\angle D E F=\angle D E H|$ it follows by ASA that $|\triangle A B G| \cong \triangle D E H$. This implies that $|A G|=|D H|$. As in the preceding discussion, it also follows that $|G C|=|H F|$. Finally, the original congruence implies $|\angle A C B=\angle G C B|=|\angle D F E=\angle H F E|$ and $|B C|=|E F|$, so that $\triangle G B C=\triangle G C B \cong \triangle H F E=\triangle H E F$ by SAS; note that we rearranged the vertices of both triangles compatibly, switching the last two vertices.

Second Case. Assume now that $|A G|=|D H|$; then the remarks preceding the proof in the first case imply that $|G C|=|H F|$. Since $G \in(A C)$ and $H \in(D F)$, it follows that G and H are in the interiors of $\angle A B C$ and $\angle D E F$ respectively. and since the original congruence implies $|\angle B A C=\angle B A G|=|\angle E D F=\angle E D H|$ and also $|A B|=|D E|$, it follows that $\triangle B A G \cong \triangle E D H$ by SAS. The latter implies that $|\angle A B G|=|\angle D E H|$, and the latter yields $|B G|=|E H|$. From this we can conclude that $\triangle G B C \cong \triangle H E F$ by SSS.
4. [25 points] The geometric reflection about the line joining $(0,0)$ and $(\cos \theta, \sin \theta)$ is the linear transformation from \mathbb{R}^{2} to itself has matrix

$$
S_{\theta}=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)
$$

and the counterclockwise rotation by an angle of measure α is the linear transformation from \mathbb{R}^{2} to itself with matrix

$$
R_{\alpha}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right) .
$$

The composite of two reflections $S_{\theta}{ }^{\circ} S_{\varphi}$ is equal to a rotation matrix R_{α}. Express α in terms of θ and φ.

SOLUTION

Use the formulas to compute the matrix product $S_{\theta}{ }^{\circ} S_{\varphi}$ explicitly.

$$
\begin{aligned}
& S_{\theta}{ }^{\circ} S_{\varphi}=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right) \cdot\left(\begin{array}{cc}
\cos 2 \varphi & \sin 2 \varphi \\
\sin 2 \varphi & -\cos 2 \varphi
\end{array}\right)= \\
& \left(\begin{array}{cc}
\cos 2 \theta \cos 2 \varphi+\sin 2 \theta \sin 2 \varphi & \cos 2 \theta \sin 2 \varphi-\sin 2 \theta \cos 2 \varphi \\
\sin 2 \theta \cos 2 \varphi-\cos 2 \theta \sin 2 \varphi & \sin 2 \theta \sin 2 \varphi+\cos 2 \theta \cos 2 \varphi
\end{array}\right)
\end{aligned}
$$

The trigonometric identities for the sine and cosine of a sum or difference of two angles imply the right hand side is just

$$
\left(\begin{array}{rr}
\cos 2(\theta-\varphi) & -\sin 2(\theta-\varphi) \\
\sin 2(\theta-\varphi) & \cos 2(\theta-\varphi)
\end{array}\right)
$$

and therefore we have $\alpha=2(\theta-\varphi)$; more precisely, α can be equal to the right hand side plus an arbitrary multiple integral of 2π, but one value is enough for this problem.

