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Mathematics 133, Fall 2020, Examination 2

Answer Key
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1. [25 points] Assume we are working in the coordinate plane. Let 6 ABC be
given, let X be a point in the interior of 6 ABC, and let Y ∈ (BA. Assume also that the
line XY meets (BC at a point Z. Which of the three points X , Y , Z is between the other
two? Give reasons for your answer.

SOLUTION

The drawing indicates that we should have Y ∗X ∗Z. To verify this, we need the following
observation from Chapter II: Let L be a line containing the collinear points P , Q and

R, and let M be a second line passing through Q. Then P and R are on the same side of

M if and only if Q is not between P and R. Proof: Since the two open half-planes
defined by M are convex, if P ∗Q ∗R is true and P , R lie on the same side of M , then Q
also lies on this half-plane, contradicting our assumption that Q ∈ M ; therefore P ∗Q ∗R
implies that P and R lie on opposite sides of M . Conversely, if P and R lie on opposite
sides of M , then there is some point X ∈ (PR) ∩M . We already know that Q ∈ M , and
since two lines only have one point in common it follows that Q = X and hence P ∗Q∗R.

We now apply this to the given situation. Since X lies in the interior of 6 ABC, we
know that it lies on the same side of AB as C and Z, and also on the same side of BC
as A and Y (note that 6 ABC = 6 Y BZ). By the preceding paragraph, the first of these
eliminates the possibility Z∗Y ∗X , and the second eliminates the possibilityX∗Z∗Y . Since
one of the three points X, Y, Z is between the other two, the only remaining possibility is
Y ∗X ∗ Z.

2



2. [25 points] Suppose that we are working in a Euclidean plane P, and let ABCD
denote a (convex) trapezoid with AB||CD. Assume further that |AD| = |DC|. Prove that
[AC bisects 6 DAB.

SOLUTION

By the Isosceles Triangle Theorem we have | 6 DCA| = | 6 DAC|. Since we know that
ABCD is a convex quadrilateral, the result on intersections of its diagonals implies that
D and B are on opposite sides of AC. Therefore 6 DCA and 6 CAB are alternate interior
angles, and hence the given condition AB||CD implies that | 6 DCA| = | 6 CAB|. Finally,
since the convexity of ABCD implies that C lies in the interior of 6 DAB and therefore
we have

| 6 DAB| = | 6 DAC| + | 6 CAB| = | 6 DCA| + | 6 CAB| = 2 · | 6 CAB|

if we use the two angle measure equations established in previous steps. These equations
show that [CA bisects 6 DAB.
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3. [25 points] Assume that we are given two angles 6 DAB and 6 DCB in a
Euclidean plane P, and suppose that we have X ∈ (AB) ∩ (CD). Prove the equation
|AX | · |XB| = |CX | · |XD|.

SOLUTION

By the Vertical Angle Theorem we know that | 6 AXD| = | 6 CXB, and hence by the AA
Similarity Theorem we have △AXD ∼ △CXB. The latter yields the proportionality
equation

|AX |

|CX|
=

|DX|

|BX |

and if we clear this of fractions we find that |AX | · |XB| = |CX | · |XD|.
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4. [25 points] As in Quiz 2, take the last four digits ABCD of your student
identification number, and once again consider the point in the coordinate plane given by
X = (A+B,C+D); let Y = (0, 0) and Z = (25, 0). Find the orthocenter of △XYZ. The
proof of the theorem on orthocenters yields one way of solving this problem.

SOLUTION

To simplify the notation let p = A + B and q = C + D as in the drawing. By the concurrence 
of the altitudes it suffices to find the point where the altitudes from X and Z meet. Since Y Z
is horizontal, the altitude from X to Y Z is a vertical line and since X = (p, q) this line must
have equation x = p. The slope of the perpendicular from Z to XY is the negative reciprocal
of the slope of XY ; since the slope of the latter line is q/p, it follows that the slope of the
perpendicular from Z is −p/q. Therefore this perpendicular line has an equation of the form

y = c −
px

q

for some constant c; since Z = (25, 0) lies on this line the constant c satisfies

0 = c −
25p

q
so that c =

25p

q
.

Therefore we can write the equation of this perpendicular as y = p(25−x)/q. Now the first
line’s equation is x = p and if we combine everything we see that the two perpendiculars
meet at the point

(

p,
p(25− p)

q

)

where p and q are given as above in terms of A,B,C,D.
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5. [25 points] Let A be the set of all points in the coordinate plane R
2 which are

on either the nonnegative x-axis or the nonnegative y-axis (hence A = all points of the
form (u, v) where either u ≥ 0 and v = 0 or else u = 0 and v ≥ 0). Describe the set L of
all points (p, q) such that the (shortest) distance from (p, q) to L is equal to 1. Describe
the points of L in numerical terms (equations and inequalities involving the coordinates p
and q). There are four cases corresponding to the four quadrants of the coordinate plane.

SOLUTION

In the picture above, the sets A and L are drawn in black and blue respectively, and the
remaining parts of the coordinate axes are drawn in gray. Let A1 and A2 denote the
rays determined by the nonnegative x and y coordinate axes respectively. Note that the
minimum distance from a point X to A is the smaller of the minimum distance to A1 and
the minimum distance to A2. We need to give a complete description for the points of L
in each of the four closed quadrants in the coordinate plane.

FIRST CLOSED QUADRANT. In this case x, y ≥ 0. As above. the minimum
distance from a point X to A is the smaller of the minimum distance to A1 and the
minimum distance to A2. Since the shortest distance from a point to a line is along a
perpendicular, these minima are x and y respectively. So the set of all first quadrant
points is all (x, y) so that the minimum of x and y is equal to 1. In other words, The
portion of A in the first quadrant is all points (x, y) in that quadrant such that y ≥ x ≥ 1
or x ≥ y ≥ 1, which is the union of the two rays {1} × [1,∞) and [1,∞)× {1}.

SECOND CLOSED QUADRANT. In this case y ≥ 0 ≥ x. Once again, since the
shortest distance from a point to the line of A2 is a common perpendicular, it follows that
the minimum distance from a point (x, y) in the second quadrant to a point of A2 is equal
to |x|. Now consider the distance from (x, y) to a point (z, 0) ∈ A1 where z ≥ 0; this
distance is equal to

√

(x− z)2 + y2 =
√

(|x|+ z)2 + y2

because z ≥ 0 ≥ x. The right hand side is greater than or equal to |x| with equality if and
only if y = z = 0. Therefore the distance from (x, y) to A is equal to |x|, and in particular
it is equal to 1 if and only if x = −1.
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THIRD CLOSED QUADRANT. In this case x, y ≤ 0. Since (0, 0) ∈ A it follows that

the minimum distance from (x, y) to A is at least
√

x2 + y2. The picture suggests that if
the latter is 1, then the minimum distance from (x, y) to A is exactly 1. More generally,

we claim that the minimum distance from (x, y) to A is exactly
√

x2 + y2. Every point of
A has the form (a, b) where a, b ≥ 0 and at least one coordinate is zero. The distance from
(x, y) to (a, b) is equal to

√

(x− a)2 + (y − b)2 =
√

(|x|+ a)2 + (|x|+ b)2

because a, b ≥ 0 ≥ x, y. The right hand side is greater than or equal to
√

x2 + y2 with

equality if and only if a = b = 0. Thus the distance from (x, y) to A is exactly
√

x2 + y2,
and therefore the intersection of A with the third quadrant is equal to the portion of the
circle x2 + y2 = 1 within that quadrant.

FOURTH CLOSED QUADRANT. In this case x ≥ 0 ≥ y. The argument in this case
is basically the same as for the second closed quadrant with the roles of the coordinates
reversed. The shortest distance from a point to the line of A1 is a common perpendicular,
it follows that the minimum distance from a point (x, y) in the second quadrant to a point
of A2 is equal to |y|. Now consider the distance from (x, y) to a point (0, z) ∈ A2 where
z ≥ 0; this distance is equal to

√

x2 + (y − z)2 =
√

x2 + (|y|+ z)2

because z ≥ 0 ≥ y. The right hand side is greater than or equal to |y| with equality if and
only if x = z = 0. Therefore the distance from (x, y) to A is equal to |y|, and in particular
it is equal to 1 if and only if y = −1.
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6. [25 points] Assume that all points arising in this discussion lie in a hyperbolic
plane P. Suppose that we are given △ADE with B ∈ (AD) and C ∈ (AE) such that
| 6 ABC| = | 6 ADE|. Is | 6 ACB| greater than, equal to or less than | 6 AED|? Prove that
your answer is correct.

SOLUTION

We shall use apply the angle defect function for the hyperbolic triangles under considera-
tion. This yields the equations

δ△ADE = δ△ABE + δ△BDE = δ△ABC + δ△BCE + δ△BDE > δ△ABC

because the defect of a hyperbolic triangle is always positive. The inequality may then be
rewritten as follows:

180 − | 6 DAE| − | 6 ADE| − | 6 AED| = δ△ADE >

δ△ABC = 180 − | 6 BAC| − | 6 ABC| − | 6 ACB|

Since 6 DAE = 6 BAC and | 6 ADE| = | 6 ABC| the inequality in the displayed expression
reduces to −| 6 AED| > −| 6 ACB|, which is equivalent to | 6 ACB| > | 6 AED|.
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