Mathematics 133, Fall 2020, Examination 2

Answer Key



1. [25 points] Assume we are working in the coordinate plane. Let ZABC be
given, let X be a point in the interior of ZABC, and let Y € (BA. Assume also that the
line XY meets (BC at a point Z. Which of the three points X, Y, Z is between the other
two? Give reasons for your answer.

SOLUTION

A

X

B °
L C

The drawing indicates that we should have Y % X % Z. To verify this, we need the following
observation from Chapter II: Let L be a line containing the collinear points P, ) and
R, and let M be a second line passing through ). Then P and R are on the same side of
M if and only if () is not between P and R. Proof:  Since the two open half-planes
defined by M are convex, if P* @ * R is true and P, R lie on the same side of M, then @)
also lies on this half-plane, contradicting our assumption that () € M; therefore P Q * R
implies that P and R lie on opposite sides of M. Conversely, if P and R lie on opposite

sides of M, then there is some point X € (PR) N M. We already know that Q € M, and
since two lines only have one point in common it follows that () = X and hence PxQ * R.m

We now apply this to the given situation. Since X lies in the interior of ZABC, we
know that it lies on the same side of AB as C and Z, and also on the same side of BC'
as A and Y (note that ZABC = /Y BZ). By the preceding paragraph, the first of these
eliminates the possibility ZxY %X, and the second eliminates the possibility X «Z*Y . Since
one of the three points X, Y, Z is between the other two, the only remaining possibility is
Y« XxZm



2. [25 points| Suppose that we are working in a Euclidean plane P, and let ABCD
denote a (convex) trapezoid with AB||C'D. Assume further that |AD| = |DC|. Prove that
[AC bisects /DAB.

SOLUTION

D x C

A B

By the Isosceles Triangle Theorem we have |/DCA| = |/DAC|. Since we know that
ABCD is a convex quadrilateral, the result on intersections of its diagonals implies that
D and B are on opposite sides of AC. Therefore /DC A and /C AB are alternate interior
angles, and hence the given condition AB||CD implies that |/DCA| = |[ZCAB|. Finally,
since the convexity of ABCD implies that C' lies in the interior of /DAB and therefore
we have

|LDAB| = |/DAC| + |LCAB| = |/DCA| + |LCAB| = 2-|/CAB|

if we use the two angle measure equations established in previous steps. These equations
show that [C'A bisects ZDAB .=



3. [25 points] Assume that we are given two angles /ZDAB and /DCB in a
Euclidean plane P, and suppose that we have X € (AB) N (CD). Prove the equation
|AX|-|XB| = |CX|-|XD|. Assumealsothat |/ DAB| = |/ DCB.

SOLUTION
A

B

By the Vertical Angle Theorem we know that [ZAXD| = |/CX B, and hence by the AA
Similarity Theorem we have AAXD ~ ACXB. The latter yields the proportionality

equation
AX|]  |DX]|

ICX| —  |BX]
and if we clear this of fractions we find that |[AX|-|XB| = |CX|-|XD|n=



4. [25 points] As in Quiz 2, take the last four digits ABCD of your student
identification number, and once again consider the point in the coordinate plane given by
X =(A+B,C+D);let Y =(0,0) and Z = (25,0). Find the orthocenter of AXYZ. The
proof of the theorem on orthocenters yields one way of solving this problem.

SOLUTION

X=(p,q)

Y =(0,0) Z = (25,0)

To simplify the notation let p = A 4+ B and g = C' + D as in the drawing. By the concurrence
of the altitudes it suffices to find the point where the altitudes from X and Z meet. Since Y Z
is horizontal, the altitude from X to Y Z is a vertical line and since X = (p, ¢) this line must
have equation x = p. The slope of the perpendicular from Z to XY'is the negative reciprocal
of the slope of XY '; since the slope of the latter line is ¢/p, it follows that the slope of the
perpendicular from Z is —p/q. Therefore this perpendicular line has an equation of the form

px
y = ¢ — —
q

for some constant ¢; since Z = (25, 0) lies on this line the constant ¢ satisfies

25 25
0 = ¢ — i 4 so that c = —p.
q q

Therefore we can write the equation of this perpendicular as y = p(25—x)/q. Now the first
line’s equation is x = p and if we combine everything we see that the two perpendiculars

meet at the point
p(25 —
( o, p))
q

where p and ¢ are given as above in terms of A, B,C, D.m



5. [25 points] Let A be the set of all points in the coordinate plane R? which are
on either the nonnegative z-axis or the nonnegative y-axis (hence A = all points of the
form (u,v) where either u > 0 and v = 0 or else u = 0 and v > 0). Describe the set L of
all points (p, q) such that the (shortest) distance from (p,q) to L is equal to 1. Describe
the points of L in numerical terms (equations and inequalities involving the coordinates p
and ¢). There are four cases corresponding to the four quadrants of the coordinate plane.

SOLUTION

In the picture above, the sets A and L are drawn in black and blue respectively, and the
remaining parts of the coordinate axes are drawn in gray. Let A; and A, denote the
rays determined by the nonnegative = and y coordinate axes respectively. Note that the
minimum distance from a point X to A is the smaller of the minimum distance to A; and
the minimum distance to As. We need to give a complete description for the points of L
in each of the four closed quadrants in the coordinate plane.

FIRST CLOSED QUADRANT. In this case x,y > 0. As above. the minimum
distance from a point X to A is the smaller of the minimum distance to A; and the
minimum distance to As. Since the shortest distance from a point to a line is along a
perpendicular, these minima are x and y respectively. So the set of all first quadrant
points is all (z,y) so that the minimum of x and y is equal to 1. In other words, The
portion of A in the first quadrant is all points (x,y) in that quadrant such that y >z > 1
or x >y > 1, which is the union of the two rays {1} x [1,00) and [1,00) x {1}.m

SECOND CLOSED QUADRANT. In this case y > 0 > x. Once again, since the
shortest distance from a point to the line of A5 is a common perpendicular, it follows that
the minimum distance from a point (x,y) in the second quadrant to a point of A5 is equal
to |z|. Now consider the distance from (z,y) to a point (z,0) € A; where z > 0; this
distance is equal to

=P+ = e+ 7+

because z > 0 > x. The right hand side is greater than or equal to || with equality if and
only if y = z = 0. Therefore the distance from (x,y) to A is equal to |x|, and in particular
it is equal to 1 if and only if z = —1.m



THIRD CLOSED QUADRANT. In this case z,y < 0. Since (0,0) € A it follows that
the minimum distance from (z,y) to A is at least \/x? + y?. The picture suggests that if
the latter is 1, then the minimum distance from (x,y) to A is exactly 1. More generally,
we claim that the minimum distance from (x,y) to A is exactly /22 + y2. Every point of
A has the form (a,b) where a,b > 0 and at least one coordinate is zero. The distance from
(x,y) to (a,b) is equal to

Vie—a)+@y-02 = V(z[+a)?+ (2] + )

because a,b > 0 > x,y. The right hand side is greater than or equal to \/z? + y? with
equality if and only if @ = b = 0. Thus the distance from (x,y) to A is exactly /22 + 32,
and therefore the intersection of A with the third quadrant is equal to the portion of the
circle 22 4+ y? = 1 within that quadrant.m

FOURTH CLOSED QUADRANT. In this case x > 0 > y. The argument in this case
is basically the same as for the second closed quadrant with the roles of the coordinates
reversed. The shortest distance from a point to the line of A; is a common perpendicular,
it follows that the minimum distance from a point (z,y) in the second quadrant to a point
of As is equal to |y|. Now consider the distance from (x,y) to a point (0,z) € As where
z > 0; this distance is equal to

22+ (y—2)? = Var+(jyl+2)?

because z > 0 > y. The right hand side is greater than or equal to |y| with equality if and
only if x = z = 0. Therefore the distance from (z,y) to A is equal to |y|, and in particular
it is equal to 1 if and only if y = —1.m



6. [25 points] Assume that all points arising in this discussion lie in a hyperbolic
plane P. Suppose that we are given AADE with B € (AD) and C € (AFE) such that
|/ABC| = |LADE]|. Is |LACB]| greater than, equal to or less than |ZAED|? Prove that
your answer is correct.

SOLUTION

A

We shall use apply the angle defect function for the hyperbolic triangles under considera-
tion. This yields the equations

INADE = 6AABE + éABDE = 6AABC + 6ABCE + SABDE > (AABC

because the defect of a hyperbolic triangle is always positive. The inequality may then be
rewritten as follows:

180 — |LDAE| — |LADE| — |LAED| = SAADE >

SAABC = 180 — |/BAC| — |LABC| — |LACB]

Since /ZDAFE = /BAC and |LADE| = |/ABC| the inequality in the displayed expression
reduces to —|LAED| > —|/ACB|, which is equivalent to [LACB| > [LAED|.=





