Mathematics 133, Fall 2020, Examination 2

Answer Key

1. [25 points] Assume we are working in the coordinate plane. Let $\angle A B C$ be given, let X be a point in the interior of $\angle A B C$, and let $Y \in(B A$. Assume also that the line $X Y$ meets ($B C$ at a point Z. Which of the three points X, Y, Z is between the other two? Give reasons for your answer.

SOLUTION

The drawing indicates that we should have $Y * X * Z$. To verify this, we need the following observation from Chapter II: Let L be a line containing the collinear points P, Q and R, and let M be a second line passing through Q. Then P and R are on the same side of M if and only if Q is not between P and R. Proof: Since the two open half-planes defined by M are convex, if $P * Q * R$ is true and P, R lie on the same side of M, then Q also lies on this half-plane, contradicting our assumption that $Q \in M$; therefore $P * Q * R$ implies that P and R lie on opposite sides of M. Conversely, if P and R lie on opposite sides of M, then there is some point $X \in(P R) \cap M$. We already know that $Q \in M$, and since two lines only have one point in common it follows that $Q=X$ and hence $P * Q * R$. .

We now apply this to the given situation. Since X lies in the interior of $\angle A B C$, we know that it lies on the same side of $A B$ as C and Z, and also on the same side of $B C$ as A and Y (note that $\angle A B C=\angle Y B Z)$. By the preceding paragraph, the first of these eliminates the possibility $Z * Y * X$, and the second eliminates the possibility $X * Z * Y$. Since one of the three points X, Y, Z is between the other two, the only remaining possibility is $Y * X * Z$.
2. [25 points] Suppose that we are working in a Euclidean plane \mathbb{P}, and let $A B C D$ denote a (convex) trapezoid with $A B \| C D$. Assume further that $|A D|=|D C|$. Prove that [$A C$ bisects $\angle D A B$.

SOLUTION

By the Isosceles Triangle Theorem we have $|\angle D C A|=|\angle D A C|$. Since we know that $A B C D$ is a convex quadrilateral, the result on intersections of its diagonals implies that D and B are on opposite sides of $A C$. Therefore $\angle D C A$ and $\angle C A B$ are alternate interior angles, and hence the given condition $A B|\mid C D$ implies that $| \angle D C A|=|\angle C A B|$. Finally, since the convexity of $A B C D$ implies that C lies in the interior of $\angle D A B$ and therefore we have

$$
|\angle D A B|=|\angle D A C|+|\angle C A B|=|\angle D C A|+|\angle C A B|=2 \cdot|\angle C A B|
$$

if we use the two angle measure equations established in previous steps. These equations show that [$C A$ bisects $\angle D A B$.
3. [25 points] Assume that we are given two angles $\angle D A B$ and $\angle D C B$ in a Euclidean plane \mathbb{P}, and suppose that we have $X \in(A B) \cap(C D)$. Prove the equation $|A X| \cdot|X B|=|C X| \cdot|X D| . \underline{\text { Assume also that }|\underline{D} A B|=|\underline{D C B}| . ~}$

SOLUTION

By the Vertical Angle Theorem we know that $|\angle A X D|=\mid \angle C X B$, and hence by the AA Similarity Theorem we have $\triangle A X D \sim \triangle C X B$. The latter yields the proportionality equation

$$
\frac{|A X|}{|C X|}=\frac{|D X|}{|B X|}
$$

and if we clear this of fractions we find that $|A X| \cdot|X B|=|C X| \cdot|X D| \cdot \mathbf{n}$
4. [25 points] As in Quiz 2, take the last four digits $A B C D$ of your student identification number, and once again consider the point in the coordinate plane given by $X=(A+B, C+D)$; let $Y=(0,0)$ and $Z=(25,0)$. Find the orthocenter of $\triangle X Y Z$. The proof of the theorem on orthocenters yields one way of solving this problem.

SOLUTION

To simplify the notation let $p=A+B$ and $q=C+D$ as in the drawing. By the concurrence of the altitudes it suffices to find the point where the altitudes from X and Z meet. Since $Y Z$ is horizontal, the altitude from X to $Y Z$ is a vertical line and since $X=(p, q)$ this line must have equation $x=p$. The slope of the perpendicular from Z to $X Y$ is the negative reciprocal of the slope of $X Y$; since the slope of the latter line is q / p, it follows that the slope of the perpendicular from Z is $-p / q$. Therefore this perpendicular line has an equation of the form

$$
y=c-\frac{p x}{q}
$$

for some constant c; since $Z=(25,0)$ lies on this line the constant c satisfies

$$
0=c-\frac{25 p}{q} \quad \text { so that } \quad c=\frac{25 p}{q} .
$$

Therefore we can write the equation of this perpendicular as $y=p(25-x) / q$. Now the first line's equation is $x=p$ and if we combine everything we see that the two perpendiculars meet at the point

$$
\left(p, \frac{p(25-p)}{q}\right)
$$

where p and q are given as above in terms of $A, B, C, D . \square$
5. [25 points] Let A be the set of all points in the coordinate plane \mathbb{R}^{2} which are on either the nonnegative x-axis or the nonnegative y-axis (hence $A=$ all points of the form (u, v) where either $u \geq 0$ and $v=0$ or else $u=0$ and $v \geq 0)$. Describe the set L of all points (p, q) such that the (shortest) distance from (p, q) to L is equal to 1 . Describe the points of L in numerical terms (equations and inequalities involving the coordinates p and q). There are four cases corresponding to the four quadrants of the coordinate plane.

In the picture above, the sets A and L are drawn in black and blue respectively, and the remaining parts of the coordinate axes are drawn in gray. Let A_{1} and A_{2} denote the rays determined by the nonnegative x and y coordinate axes respectively. Note that the minimum distance from a point X to A is the smaller of the minimum distance to A_{1} and the minimum distance to A_{2}. We need to give a complete description for the points of L in each of the four closed quadrants in the coordinate plane.

FIRST CLOSED QUADRANT. In this case $x, y \geq 0$. As above. the minimum distance from a point X to A is the smaller of the minimum distance to A_{1} and the minimum distance to A_{2}. Since the shortest distance from a point to a line is along a perpendicular, these minima are x and y respectively. So the set of all first quadrant points is all (x, y) so that the minimum of x and y is equal to 1 . In other words, The portion of A in the first quadrant is all points (x, y) in that quadrant such that $y \geq x \geq 1$ or $x \geq y \geq 1$, which is the union of the two rays $\{1\} \times[1, \infty)$ and $[1, \infty) \times\{1\} .$.

SECOND CLOSED QUADRANT. In this case $y \geq 0 \geq x$. Once again, since the shortest distance from a point to the line of A_{2} is a common perpendicular, it follows that the minimum distance from a point (x, y) in the second quadrant to a point of A_{2} is equal to $|x|$. Now consider the distance from (x, y) to a point $(z, 0) \in A_{1}$ where $z \geq 0$; this distance is equal to

$$
\sqrt{(x-z)^{2}+y^{2}}=\sqrt{(|x|+z)^{2}+y^{2}}
$$

because $z \geq 0 \geq x$. The right hand side is greater than or equal to $|x|$ with equality if and only if $y=z=0$. Therefore the distance from (x, y) to A is equal to $|x|$, and in particular it is equal to 1 if and only if $x=-1$.

THIRD CLOSED QUADRANT. In this case $x, y \leq 0$. Since $(0,0) \in A$ it follows that the minimum distance from (x, y) to A is at least $\sqrt{x^{2}+y^{2}}$. The picture suggests that if the latter is 1 , then the minimum distance from (x, y) to A is exactly 1 . More generally, we claim that the minimum distance from (x, y) to A is exactly $\sqrt{x^{2}+y^{2}}$. Every point of A has the form (a, b) where $a, b \geq 0$ and at least one coordinate is zero. The distance from (x, y) to (a, b) is equal to

$$
\sqrt{(x-a)^{2}+(y-b)^{2}}=\sqrt{(|x|+a)^{2}+(|x|+b)^{2}}
$$

because $a, b \geq 0 \geq x, y$. The right hand side is greater than or equal to $\sqrt{x^{2}+y^{2}}$ with equality if and only if $a=b=0$. Thus the distance from (x, y) to A is exactly $\sqrt{x^{2}+y^{2}}$, and therefore the intersection of A with the third quadrant is equal to the portion of the circle $x^{2}+y^{2}=1$ within that quadrant..

FOURTH CLOSED QUADRANT. In this case $x \geq 0 \geq y$. The argument in this case is basically the same as for the second closed quadrant with the roles of the coordinates reversed. The shortest distance from a point to the line of A_{1} is a common perpendicular, it follows that the minimum distance from a point (x, y) in the second quadrant to a point of A_{2} is equal to $|y|$. Now consider the distance from (x, y) to a point $(0, z) \in A_{2}$ where $z \geq 0$; this distance is equal to

$$
\sqrt{x^{2}+(y-z)^{2}}=\sqrt{x^{2}+(|y|+z)^{2}}
$$

because $z \geq 0 \geq y$. The right hand side is greater than or equal to $|y|$ with equality if and only if $x=z=0$. Therefore the distance from (x, y) to A is equal to $|y|$, and in particular it is equal to 1 if and only if $y=-1$.
6. [25 points] Assume that all points arising in this discussion lie in a hyperbolic plane \mathbb{P}. Suppose that we are given $\triangle A D E$ with $B \in(A D)$ and $C \in(A E)$ such that $|\angle A B C|=|\angle A D E|$. Is $|\angle A C B|$ greater than, equal to or less than $|\angle A E D|$? Prove that your answer is correct.

SOLUTION

We shall use apply the angle defect function for the hyperbolic triangles under consideration. This yields the equations
$\delta \triangle A D E=\delta \triangle A B E+\delta \triangle B D E=\delta \triangle A B C+\delta \triangle B C E+\delta \triangle B D E>\delta \triangle A B C$
because the defect of a hyperbolic triangle is always positive. The inequality may then be rewritten as follows:

$$
\begin{gathered}
180-|\angle D A E|-|\angle A D E|-|\angle A E D|=\delta \triangle A D E> \\
\delta \triangle A B C=180-|\angle B A C|-|\angle A B C|-|\angle A C B|
\end{gathered}
$$

Since $\angle D A E=\angle B A C$ and $|\angle A D E|=|\angle A B C|$ the inequality in the displayed expression reduces to $-|\angle A E D|>-|\angle A C B|$, which is equivalent to $|\angle A C B|>|\angle A E D| \cdot ■$

