Mathematics 133, Fall 2020, Examination 2

~

Answer Key

1. [25 points] Assume we are working in the coordinate plane. Let $\angle ABC$ be given, let X be a point in the interior of $\angle ABC$, and let $Y \in (BA)$. Assume also that the line XY meets (BC at a point Z. Which of the three points X, Y, Z is between the other two? Give reasons for your answer.

The drawing indicates that we should have Y * X * Z. To verify this, we need the following observation from Chapter II: Let L be a line containing the collinear points P, Q and R, and let M be a second line passing through Q. Then P and R are on the same side of M if and only if Q is not between P and R. Proof: Since the two open half-planes defined by M are convex, if P * Q * R is true and P, R lie on the same side of M, then Qalso lies on this half-plane, contradicting our assumption that $Q \in M$; therefore P * Q * Rimplies that P and R lie on opposite sides of M. Conversely, if P and R lie on opposite sides of M, then there is some point $X \in (PR) \cap M$. We already know that $Q \in M$, and since two lines only have one point in common it follows that Q = X and hence P * Q * R.

We now apply this to the given situation. Since X lies in the interior of $\angle ABC$, we know that it lies on the same side of AB as C and Z, and also on the same side of BC as A and Y (note that $\angle ABC = \angle YBZ$). By the preceding paragraph, the first of these eliminates the possibility Z*Y*X, and the second eliminates the possibility X*Z*Y. Since one of the three points X, Y, Z is between the other two, the only remaining possibility is Y*X*Z.

2. [25 points] Suppose that we are working in a Euclidean plane \mathbb{P} , and let ABCD denote a (convex) trapezoid with AB||CD. Assume further that |AD| = |DC|. Prove that |AC| bisects $\angle DAB$.

By the Isosceles Triangle Theorem we have $|\angle DCA| = |\angle DAC|$. Since we know that ABCD is a convex quadrilateral, the result on intersections of its diagonals implies that D and B are on opposite sides of AC. Therefore $\angle DCA$ and $\angle CAB$ are alternate interior angles, and hence the given condition AB||CD implies that $|\angle DCA| = |\angle CAB|$. Finally, since the convexity of ABCD implies that C lies in the interior of $\angle DAB$ and therefore we have

$$|\angle DAB| = |\angle DAC| + |\angle CAB| = |\angle DCA| + |\angle CAB| = 2 \cdot |\angle CAB|$$

if we use the two angle measure equations established in previous steps. These equations show that $[CA \text{ bisects } \angle DAB.$

3. [25 points] Assume that we are given two angles $\angle DAB$ and $\angle DCB$ in a Euclidean plane \mathbb{P} , and suppose that we have $X \in (AB) \cap (CD)$. Prove the equation $|AX| \cdot |XB| = |CX| \cdot |XD|$. Assume also that |/DAB| = |/DCB|.

By the Vertical Angle Theorem we know that $|\angle AXD| = |\angle CXB$, and hence by the AA Similarity Theorem we have $\triangle AXD \sim \triangle CXB$. The latter yields the proportionality equation

$$\frac{|AX|}{|CX|} = \frac{|DX|}{|BX|}$$

and if we clear this of fractions we find that $|AX| \cdot |XB| = |CX| \cdot |XD|$.

4. [25 points] As in Quiz 2, take the last four digits ABCD of your student identification number, and once again consider the point in the coordinate plane given by X = (A + B, C + D); let Y = (0, 0) and Z = (25, 0). Find the orthocenter of $\triangle XYZ$. The proof of the theorem on orthocenters yields one way of solving this problem.

To simplify the notation let p = A + B and q = C + D as in the drawing. By the concurrence of the altitudes it suffices to find the point where the altitudes from X and Z meet. Since YZis horizontal, the altitude from X to YZ is a vertical line and since X = (p, q) this line must have equation x = p. The slope of the perpendicular from Z to XY is the negative reciprocal of the slope of XY; since the slope of the latter line is q/p, it follows that the slope of the perpendicular from Z is -p/q. Therefore this perpendicular line has an equation of the form

$$y = c - \frac{px}{q}$$

for some constant c; since Z = (25, 0) lies on this line the constant c satisfies

$$0 = c - \frac{25p}{q} \quad \text{so that} \quad c = \frac{25p}{q}$$

Therefore we can write the equation of this perpendicular as y = p(25-x)/q. Now the first line's equation is x = p and if we combine everything we see that the two perpendiculars meet at the point

$$\left(p, \frac{p(25-p)}{q}\right)$$

where p and q are given as above in terms of A, B, C, D.

5. [25 points] Let A be the set of all points in the coordinate plane \mathbb{R}^2 which are on either the nonnegative x-axis or the nonnegative y-axis (hence A = all points of the form (u, v) where either $u \ge 0$ and v = 0 or else u = 0 and $v \ge 0$). Describe the set L of all points (p, q) such that the (shortest) distance from (p, q) to L is equal to 1. Describe the points of L in numerical terms (equations and inequalities involving the coordinates p and q). There are four cases corresponding to the four quadrants of the coordinate plane.

In the picture above, the sets A and L are drawn in black and blue respectively, and the remaining parts of the coordinate axes are drawn in gray. Let A_1 and A_2 denote the rays determined by the nonnegative x and y coordinate axes respectively. Note that the minimum distance from a point X to A is the smaller of the minimum distance to A_1 and the minimum distance to A_2 . We need to give a complete description for the points of L in each of the four closed quadrants in the coordinate plane.

FIRST CLOSED QUADRANT. In this case $x, y \ge 0$. As above, the minimum distance from a point X to A is the smaller of the minimum distance to A_1 and the minimum distance to A_2 . Since the shortest distance from a point to a line is along a perpendicular, these minima are x and y respectively. So the set of all first quadrant points is all (x, y) so that the minimum of x and y is equal to 1. In other words, The portion of A in the first quadrant is all points (x, y) in that quadrant such that $y \ge x \ge 1$ or $x \ge y \ge 1$, which is the union of the two rays $\{1\} \times [1, \infty)$ and $[1, \infty) \times \{1\}$.

SECOND CLOSED QUADRANT. In this case $y \ge 0 \ge x$. Once again, since the shortest distance from a point to the line of A_2 is a common perpendicular, it follows that the minimum distance from a point (x, y) in the second quadrant to a point of A_2 is equal to |x|. Now consider the distance from (x, y) to a point $(z, 0) \in A_1$ where $z \ge 0$; this distance is equal to

$$\sqrt{(x-z)^2 + y^2} = \sqrt{(|x|+z)^2 + y^2}$$

because $z \ge 0 \ge x$. The right hand side is greater than or equal to |x| with equality if and only if y = z = 0. Therefore the distance from (x, y) to A is equal to |x|, and in particular it is equal to 1 if and only if x = -1.

THIRD CLOSED QUADRANT. In this case $x, y \leq 0$. Since $(0,0) \in A$ it follows that the minimum distance from (x, y) to A is at least $\sqrt{x^2 + y^2}$. The picture suggests that if the latter is 1, then the minimum distance from (x, y) to A is exactly 1. More generally, we claim that the minimum distance from (x, y) to A is exactly $\sqrt{x^2 + y^2}$. Every point of A has the form (a, b) where $a, b \geq 0$ and at least one coordinate is zero. The distance from (x, y) to (a, b) is equal to

$$\sqrt{(x-a)^2 + (y-b)^2} = \sqrt{(|x|+a)^2 + (|x|+b)^2}$$

because $a, b \ge 0 \ge x, y$. The right hand side is greater than or equal to $\sqrt{x^2 + y^2}$ with equality if and only if a = b = 0. Thus the distance from (x, y) to A is exactly $\sqrt{x^2 + y^2}$, and therefore the intersection of A with the third quadrant is equal to the portion of the circle $x^2 + y^2 = 1$ within that quadrant.

FOURTH CLOSED QUADRANT. In this case $x \ge 0 \ge y$. The argument in this case is basically the same as for the second closed quadrant with the roles of the coordinates reversed. The shortest distance from a point to the line of A_1 is a common perpendicular, it follows that the minimum distance from a point (x, y) in the second quadrant to a point of A_2 is equal to |y|. Now consider the distance from (x, y) to a point $(0, z) \in A_2$ where $z \ge 0$; this distance is equal to

$$\sqrt{x^2 + (y-z)^2} = \sqrt{x^2 + (|y|+z)^2}$$

because $z \ge 0 \ge y$. The right hand side is greater than or equal to |y| with equality if and only if x = z = 0. Therefore the distance from (x, y) to A is equal to |y|, and in particular it is equal to 1 if and only if y = -1.

6. [25 points] Assume that all points arising in this discussion lie in a hyperbolic plane \mathbb{P} . Suppose that we are given $\triangle ADE$ with $B \in (AD)$ and $C \in (AE)$ such that $|\angle ABC| = |\angle ADE|$. Is $|\angle ACB|$ greater than, equal to or less than $|\angle AED|$? Prove that your answer is correct.

We shall use apply the angle defect function for the hyperbolic triangles under consideration. This yields the equations

 $\delta \triangle ADE = \delta \triangle ABE + \delta \triangle BDE = \delta \triangle ABC + \delta \triangle BCE + \delta \triangle BDE > \delta \triangle ABC$

because the defect of a hyperbolic triangle is always positive. The inequality may then be rewritten as follows:

$$180 - |\angle DAE| - |\angle ADE| - |\angle AED| = \delta \triangle ADE >$$

$$\delta \triangle ABC = 180 - |\angle BAC| - |\angle ABC| - |\angle ACB|$$

Since $\angle DAE = \angle BAC$ and $|\angle ADE| = |\angle ABC|$ the inequality in the displayed expression reduces to $-|\angle AED| > -|\angle ACB|$, which is equivalent to $|\angle ACB| > |\angle AED|$.