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similar triangle, in which the side corresponding to 1 was a, the other side would be a2.
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The problems that formed the central theme in La Géométrie were generalizations

of the three- and four-line locus problems Pappus had propounded in his commentary

on the Conics of Apollonius. In their original form the Pappus problems run: given four

lines in a plane,  nd the locus of a point that moves so that the product of the distances

from two  xed lines (along speci ed directions) is proportional to the square of the

distance from the third line [three-line locus problem], or proportional to the product of

the distances from the other two lines [four-line locus problem]. Whereas Pappus had

stated without proof that the required locus was one of the conic sections, Descartes

showed this algebraically. Subsequently, Newton solved the problem geometrically in

his Principia (1687).

Descartes began his attack on the problem by choosing one of the given lines, say,

AB, and a  xed point on it, say, A (he selected what would later be called an axis of

coordinates and an origin). From an arbitrary point C of the locus sought, a straight line

CB was drawn to AB, meeting it at a given angle. The lines AB and BC were then the

quantities that would determine the position of C , and he called them x and y:

I would simplify matters by considering one of the given lines and one of those to be drawn

(for example, AB and BC ) as the principal lines to which I shall try to refer all others. Call

the segment of the line AB between A and B, x and call BC, y.

The lengths of the other lines were expressed in terms of x and y; and by the conditions

of the problem. Descartes combined these, to arrive at an equation of the curve upon

which C would have to lie.
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What we have here is the germinal idea of a coordinate system in which the position

of a point in the plane is de ned by its distances, x and y, from two  xed axes. Descartes

was choosing what in current language is an oblique coordinate system, although he did

not formally introduce a second axis, the y-axis. Nowhere in La Géométrie does the

modern rectangular coordinate system appear. Descartes’s presentation differed from that

now current also in his use of only positive values of x and y, that is, by his restriction
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Descartes was thus led to one proposition so sound that it could not be doubted, the

certainty of his own existence; for doubt itself is an act of thought and thought does

not take place without a thinker. He enunciated this in the most famous sentence in

philosophy, one that has been the subject of numerous commentaries: “Je pense, donc je

suis.” (I think, therefore I am.) Having satis ed himself of the existence of a thinking

being, Descartes passed on to a search for other propositions that appeared equally

self-evident and irrefutable. For him, there was no greater guarantee of the truth of a

proposition than that it should survive the most careful scrutiny of his own independent

criticism. “We ought never to allow ourselves to be persuaded of the truth of anything

unless on the evidence of our reason,” Descartes wrote. This unbounded con dence in

the capacity of human reason helped launch the Great Debate between faith and reason

that was to preoccupy most Western Europeans in the century to come.

Inventing Cartesian Geometry

Three appendixes to the Discours were actual illustrations of Descartes’s new method

of discovering scienti c truths. Although the Discours was intended to be a preface to

La Dioptrique, Les Météores, and La Géométrie, history has completely reversed the

sequence; and today the Discours is studied by students of modern philosophy, while

these works on science are virtually ignored. La Dioptrique (Dioptrics) deals with the

nature and properties of light, including an account of the law of refraction, the anatomy

of the human eye, and the shape of lenses best adapted for the newly invented telescope.

Les Météores (Meteorology) aims at a scienti c explanation of atmospheric phenomena;

it is concerned with such topics as how snow crystals are formed, the size of raindrops,

the cause of thunder and lightning, and the formation of the rainbow. Of the three essays

accompanying the Discours, the third, La Géométrie (Geometry), is the one in which

Descartes made his great and lasting contribution to pure mathematics. In the Géométrie,

he combined the methods of algebra and geometry to produce the new  eld of analytic

geometry. The English philosopher John Stuart Mill called this “the greatest single step

ever made in the progress of the exact sciences.” Tradition holds that the idea of analytic

geometry came to Descartes while he watched a  y crawl along the ceiling of his room

near a corner; his immediate problem became expressing the path of the  y in terms of

its distance from the adjacent walls. The story is more agreeable fable than fact.

Of the three parts of La Géométrie, the  rst two are devoted mainly to applying

algebra to geometry, while the third treats the theory of equations. Book I bears the title

Problems Which Can Be Constructed by Means of Circles and Straight Lines Only. At the

threshold of the work, Descartes introduced the algebraic notation still in use today. The

last letters of the alphabet, x , y, and z, designate unknown quantities, and the  rst letters

of the alphabet stand for constants. Descartes was perhaps the  rst to use the same letter

for both positive and negative quantities. Our modern exponential notation for powers is

also found here. In a more radical step, Descartes broke with Greek tradition by divorcing

numbers from reference to physical quantity. Instead of interpreting a2 (or aa as he wrote

it) and a3, for example, as an area and a volume, he considered them nothing more than

lines. For Descartes, a2 was simply the fourth term in the proportion 1 : a D a : a2 and

as such could be represented by a line once a was given. To devise a construction that

corresponded to the proportion 1 : a D a : a2, he arbitrarily chose a unit length 1, to

which all other lengths were referred. Then a triangle with sides 1 and a was drawn; in a
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First page of Descartes’s La Géométrie (1637). (Reprinted by permission of Open Court

Publishing Company, La Salle, Illinois, from The Geometry of René Descartes, translated by David

Eugene Smith and Marcia L. Latham.)

fashion from the most universal principles, it would be possible to deduce everything

rationally knowable.

The starting point for Descartes’s thought was to discover the simplest ideas or

principles, those of which there could be no doubt. Because he had lost all con dence

in traditional teachings. Descartes began by breaking away from authority altogether

in matters of science and philosophy, deliberately rejecting all entrenched dogmas and

doctrines. In his own words from the Discours:

I thought that I ought to reject as absolutely false all opinions in regard to which I could

suppose the least ground of doubt, in order to ascertain whether after that there remained

anything in my belief that was wholly indubitable.
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cold. She proposed to Descartes that they meet three times a week, always at  ve o’clock

in the morning, when her mind was unfatigued and she felt the most energetic. For two

months Descartes conformed to his royal pupil’s schedule, walking in the winter dawn

from his rooms to the ice-cold library. His own lifelong routine was radically changed;

as a foreign Catholic at a Lutheran court he felt isolated and homesick. “It seems to me,”

he wrote to his friend the Comte de Brégy, “that men’s thoughts freeze here in winter

just like water.” The rigors of one of the bitterest winters in memory proved too much for

Descartes’s constitution, which had never been robust. On February 1, 1650, he caught

a cold that rapidly developed into pneumonia, and he died after 10 days of suffering and

delirium. He was buried where Catholics were usually interred, in a cemetery set aside

for infants who died before baptism. Fifteen years later his remains (except for the right

hand, which was kept as a memento by the of cial who arranged the transaction) were

conveyed back to France, where a magni cent monument was erected to his memory in

the Church of Saint Genevieve. As Descartes’s doctrines were by then under the ban of

both the Church and the universities, the funeral oration was prohibited by a court order,

which arrived during the funeral service.

The year 1637 saw the publication of the work that is considered the most signi cant

of Descartes’s writings: Discours de la Méthode pour bien conduire sa Raison et chercher

la Vérité dans les Sciences (Discourse on the Method of Rightly Conducting the Reason

in the Search for Truth in the Sciences), with its scienti c appendages La Dioptrique,

Les Météores, and La Géométrie. The Discours is not, as commonly supposed, a formal

philosophical treatise but a short autobiographical résumé of Descartes’s progress in

arriving at his method. Its  rst edition had 78 pages, roughly a sixth of the entire work.

It was written in his native tongue, though traditionally Latin was used for learned

subjects, and it showed at once the power and precision of the vernacular as a vehicle

for expressing highly complicated philosophical and scienti c thoughts. (In Principia

Philosophiae, Descartes reverted to Latin to make the work more acceptable to the Church

and the universities.) Descartes’s use of the French language speeded the diffusion of his

ideas. The work was widely read; but though the Discours brought fame to its author,

the fortune went to the book’s printer. The printer paid a small price indeed for one

of the landmarks in Western thought. Descartes had asked only to be given, instead of

royalties, 200 free copies of the new book for distribution to his friends.

The whole of Descartes’s philosophy of “systematic doubt” as expounded in the

Discours is dominated by his pursuit of certainty. The certainty of mathematics, he

delighted to repeat, consists of this—it starts with the simplest elements whose truth is

recognized, and then proceeds by the process of deduction from one evident proposition

to another. Mathematics should therefore be a model for other branches of study. To let

Descartes speak for himself:

The long chains of simple and easy reasonings by means of which geometers are accustomed

to reach the conclusions of their most dif cul t demonstrations led me to imagine that all

things, to the knowledge of which man is competent, are mutually connected in the same

way, and that there is nothing so far removed from us as to be beyond our reach, or so

hidden that we cannot discover it, provided only we abstain from accepting the false for the

true, and always preserve in our thoughts the order necessary for the deduction of one truth

from another.

The character of the reasoning of mathematics rather than the results was what so im-

pressed Descartes. And he was anxious to see whether, by arguing in a mathematical
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marvelous science whose foundations he found on this memorable day. Some authorities

are inclined to believe that he formulated the principles of analytic geometry; others

feel that Descartes conceived a complete reform of philosophy based on the methods of

mathematics. As Bertrand Russell observed, “Socrates used to meditate all day in the

snow, but Descartes’s mind only worked when he was warm.”

By 1628, having grown weary from years of aimless wandering through Holland,

Germany, Hungary, and Italy, Descartes settled down to what might be called the produc-

tive period of his life. Holland, which had recently won independence after a protracted

struggle with Spain, seemed the country best  tted to offer the tolerance and tranquility

Descartes needed to pursue his researches. There, in great seclusion (barring three brief

visits to France to look after family affairs), he meditated and wrote for 20 years. Until

then he had published nothing. Descartes conceived therefore of writing an almost en-

cyclopedic treatise on physics, which he chose to call Le Monde (The World). The time

from 1629 to 1633 was occupied with building up a cosmological theory of vortices to

explain all natural phenomena. On the eve of the completion of Le Monde, he learned

that Galileo’s Dialogue on the Two Chief Systems of the World, published the previous

year, had earned the censure of the Church. It was clear that the earth was not to be

summarily dismissed from its position as the immovable center of the solar system. His

own work, af rming as it did the heliocentric hypothesis, would have made him equally

guilty with Galileo, so Descartes prudently abandoned the project. The publication of Le

Monde had to wait until 1664, well after his death.

It was not moral weakness that forced Descartes to suspend publication of Le Monde,

but rather that he never ceased to regard himself as a sincere and devoted Roman Catholic.

He wrote sadly to Mersenne, “This has so strongly affected me that I have almost

resolved to burn all my manuscript, or at least show it to no one. But on no account

will I publish anything that contains a word that might displease the Church.” Not that

the fruits of his labor were withheld from the world, for Descartes did not destroy

his papers as he  rst threatened to do. The ideas contained therein, modi ed but not

abandoned, had their presentation to the public in his  rst principal published work, the

Discours de la Méthode (1637). Although the Discours included a summary of Le Monde,

Descartes so sidestepped the controversy over Copernicanism that one could glean little

from it concerning his cosmology; in particular, any mention of vortices was studiously

avoided. Finally, in 1644, the Principia Philosophiae was issued, in which he explained

at some length the formation of the physical world, by “gradual and natural means”

out of matter and motion. Descartes’s new “mechanical philosophy” quickly became the

rage, a dominant feature of discussion in intellectual circles.

By 1649, Descartes’s reputation had been established throughout Europe, and he was

invited by Queen Christina of Sweden, the daughter of Gustavus Adolphus, to visit her

court to tutor her in philosophy. She also suggested that he might help her in planning an

academy of sciences that would rival the best in Europe. When Descartes had misgivings

about living in “the land of bears amongst rocks and ice,” the young queen (she was

then but 22 years old) dispatched an admiral to coax him and then a Swedish warship

to fetch him. Accepting the invitation was a fatal decision on Descartes’s part. It is even

said that a presentiment of death came over him as he prepared for the journey.

Descartes was received with every honor and had no cause for complaint until the

time drew near for his personal instruction of the queen to begin. From childhood on,

Christina had slept no more than  ve hours a night, and she was indifferent to heat or
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René Descartes
(1596–1650)

(Smithsonian Institution.)

this habit; throughout the rest of his life (except for one unfortunate incident that may

well have hastened his death), Descartes preferred to rise late, spending the early hours

in bed meditating and writing. Indeed, when he visited Pascal in 1647, Descartes stated

that the only way he could do good work in mathematics and preserve his health was

never to allow anyone to get him up in the morning before he felt so inclined.

On leaving school in 1612, Descartes followed the usual path of a young man of

wealth living in France by going to Paris to taste the pleasures of its social life. This

phase did not last long, for in Paris, he renewed his schoolboy friendship with that most

indefatigable of learned gossips, the good Father Mersenne. Mersenne soon rekindled

Descartes’s interest in serious study, and in almost cloistral retirement they devoted

two years to mathematical investigation. Although the younger Descartes had no deep

inclination to follow his father’s profession, he then entered the University of Poitiers,

where he earned a degree in law in 1616.

In 1617 Descartes, then 21 years old and tired of textbooks, decided to learn more

about the world at  rsthand. He enlisted in the army as a gentleman volunteer,  rst

joining the troops of Prince Maurice of Nassau in Holland and afterward taking service

under the Duke of Bavaria. There is no evidence of any real soldiering on Descartes’s

part, only years of leisure, in which he had time to pursue his favorite studies. The

night of November 10, 1619, while in winter quarters with the Bavarian army along

the Danube, was critical in Descartes’s life. He escaped the cold by shutting himself up

alone all day in a “poêle”—literally a stove, actually an overheated room. Tired from

the heat, he dreamed three feverish dreams, in which he discovered “the foundations

of a marvelous science.” At the same time his future career as a mathematician and

philosopher was revealed to him. (Near the close of the  nal dream, as Descartes tells

us, he saw a book opened at a passage of the Latin poet Ausonius, containing the words

“Which way shall I follow?” As the dream continued, an unknown man handed him a

bit of verse beginning, “Is and is not,” which he understood as representing truth and

falsehood in human knowledge.) Descartes neglected to specify the exact nature of the
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12. Vièta solved the quadratic equation x2 C ax D b by

substituting x D y  a=2. This produces a quadratic

in y in which the  rst-de gree term is missing. Use

Vièta’s method to solve the quadratic equations:

(a) x2 C 8x D 9.

(b) x2 C 10x D 144.

(c) x2 C 12x D 64.

(d) 3x2 C 10x D 32. [Hint: Multiply both sides by

3 and let z D 3x .]

13. To solve the equation x2 C ax D b2 geometrically,

René Descartes would have used the method as

described. Draw a line segment AB of length b and

at A erect a perpendicular AC of length a=2. With C

as center, construct a circle of radius a=2 and draw a

line through B and C , intersecting the circle at points

D and E . Prove that the length of the segment BE is

the value of x that satis e s x2 C ax D b2.

a

2

D

C

E

BA

x

b

8.2 Descartes: The Discours de la Méthode

The Writings of Descartes

Among the principal movers in the seven-

teenth-century scienti c revolution, René

Descartes must certainly be included.Through

the publication of La Géométrie, which made

analytic geometry known to his contempo-

raries, Descartes is generally acknowledged to have laid the foundations for the growth

of mathematics in modern times. This  rst really great advance beyond the techniques

known to the ancients changed the face of mathematics and led, within a generation, to

the development of the calculus by Newton and Leibniz. It is not too much to say that

Descartes’s career marks the turning point between medieval and modern mathematics.

René Descartes (1596–1650) was born at La Haye, a small town about 200 miles

southwest of Paris, in the province of Touraine. His father belonged to the lesser nobility.

He was a councilor at the Parlement of Brittany—in effect, a provincial judge. Descartes

went through the normal upbringing of a gentleman of that time. At age eight he was

placed in the lately founded Jesuit College of La Flèche, perhaps the most illustrious

school in which a student could enroll. There he came to know Marin Mersenne, who

was seven or eight years older. The  rst  ve years of the curriculum at La Flèche

were devoted to the traditional course in languages and the humanities. The  nal three

years embraced logic, philosophy, physics, and mathematics. Mathematics, because of

the certainty of its demonstrations, was the only subject that really satis ed Descartes,

even at this early age.

Descartes’s health was delicate during infancy and childhood, and he was not ex-

pected to live long. His teachers at La Flèche, recognizing this physical weakness, treated

him with exceptional consideration; regular attendance at lectures was not required of

him, and he was allowed to lie in bed each morning as late as he pleased. He never lost
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8.1 Problems

1. Solve the following problems from the Treviso

Arithmetic:

(a) A man  nds a purse with an unknown number

of ducats in it. After he spends 1/4, 1/5, and 1/6

of the amount, 9 ducats remain. It is required to

 nd out how much money was in the purse.

(b) A hare is 150 paces ahead of a hound which

pursues him. The hare covers 6 paces each time

the hound covers 10. It is required to know

how many paces the hound has made when he

overtakes the hare.

(c) The Holy Father sent a courier from Rome to

Venice, commanding him that he should reach

Venice in 7 days. The most illustrious Signoria

of Venice also sent another courier to Rome,

who should reach Rome in 9 days. And from

Rome to Venice is 250 miles. It happened that

by the order of these lords the couriers started

their journeys at the same time. It is required to

 nd in how many days they will meet.

2. From Nicolas Chuquet’s Tripary, 1484: I am owed

3240  orins by a debtor who pays me 1  orin the

 rst day, 2 the second day, 3 the third day, and so

on. In how many days will the debt be paid off?

3. From Robert Recorde’s The Whetstone of Witte,

1557: A captain marshalls his army in a square

formation. When the square is of one size, he has

284 men too many. But when he rearranges them in

a square one man more on a side than before, he

lacks 25 men. How many men does he have?

4. From Christoph Clavius’s Algebra, 1608: If I gave 7

lire to each beggar that came to my door, I would

have 24 lire left. But if I tried to give them 9 lire

apiece, I would be lacking 32 lire. How many

beggars came to my door, and how many lire did I

have?

5. The two problems below are found in the Rechnung

(1552) of Adam Riese. Solve them.

(a) A son asks his father how old he is. The father

answers him by saying: If you were already as

much, half again as much, and a fourth again as

much older than you are now, and one more

year, you would be 100 years old. The question

is, how old is the son?

(b) Seven  orins from Padua may be exchanged for

5 at Venice, and 10  orins at Venice are worth

6 at Nuremberg. Also 100  orins from

Nuremberg are worth 73 at Köln. What is the

value in Köln of 100 Paduan  orins?

6. Use Napier’s rods to multiply 458 by 79.

7. From the de nition of Napier’s logarithm, derive the

formulas:

(a) Nap.log(M=N ) D
Nap: log M  Nap: log N C Nap: log 1:

(b) Nap: log Mr D
r Nap: log M C (1 r )Nap: log 1:

8. If N D 107(1 10 7)n , justify the equations below

relating the Naperian logarithm of N to its natural

logarithm:

Nap: log N D log1 10 7 (10 7 N )

D 107 log
(1 10 7)107 (10 7 N )

D 107 log1=e(10 7 N ) D 107 loge(107=N ):

9. Find an approximation to the number N such that

Nap.log N D 6:

10. The transformation

log x D
Nap: log 1 Nap: log x

Nap: log 1 Nap: log 10

converts Napier’s logarithm to Briggs’s common

logarithm. Show that:

(a) log 1 D 0, log 10 D 1.

(b) log xy D log x C log y,

log(x=y) D log x  log y.

(c) log x r D r log x .

(d) log 10n x D n C log x .

11. François Vièta’s trigonometric skill led to his

discovery (1593) of an in nite-product expansion for

³ in terms of square roots. Supply the missing details

in his derivation:

(a) 1 D sin ³=2
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The riddle of the orbit of Mars engrossed Kepler’s attention for the next eight years.

Tycho’s very accurate measures of the position of Mars relative to the sun enabled Kepler

to test various hypotheses and cast them aside when they proved incompatible with the

observed movement. With a Pythagorean craving for simplicity, he felt sure that the orbit

was a circle. It was only after many failures to  t the data to a circular orbit that he

began to suspect that it must be some other closed path. For a long time, Kepler was

inclined to believe that it was an oval, shaped like an egg. He tried various sorts of

ovals, but none eliminated the discrepancies between his tentative theories and Tycho’s

observations. Years of work and disappointment  nally forced him to the conclusion that

only an elliptical orbit, with the sun occupying one of the two foci, satis ed Tycho’s

data. The same was presumably true for all other planets, because the harmony of nature

demanded that all “have similar habits.” This was Kepler’s celebrated  rst law. Another

conclusion he extracted from the astronomical data was that the speed with which a

planet traversed its elliptical orbit varied in a regular pattern, accelerating with approach

to the sun and decelerating with departure from the sun. From this he was led to another

pillar of celestial mechanics, Kepler’s second law: The line drawn from the sun to a

planet sweeps over equal areas in equal times.

The full history of his investigation of Mars, together with the laws just stated,

was published in 1609 in a long book called Astronomia Nova. After 10 years’ further

effort, Kepler arrived at a relation, his third and last great law of planetary motion,

connecting the times of revolution of any two planets with their respective distances

from the sun. The ground was thus prepared for the later achievements of Isaac Newton,

who was able to prove mathematically not only that the behavior implicitly extended by

Kepler to all the planets agreed with observation but also that no other behavior was

possible.

Kepler’s celebrated results can be described thus:

1. The planets move in elliptical orbits with the sun at one focus.

2. Each planet moves around its orbit, not uniformly, but in such a way that a straight

line drawn from the sun to the planet sweeps out equal areas in equal time

intervals.

3. The squares of the times required for any two planets to make complete orbits

about the sun are proportional to the cubes of their mean distances from the sun.

Archimedes is reported to have boasted, “Give me a place to stand and I will move the

world.” The observations Tycho Brahe had gathered became for Kepler a place to stand,

and he did move the world. His three laws, which established the  rst correct principles of

planetary mechanics, overturned medieval cosmology and much of Aristotelian physics.

From ancient times through the days of Copernicus and Tycho the idea that a planet’s

orbit must be a circle had been unchallenged. Indeed, a circle was accepted as the perfect

geometrical form, and perfection was accepted as the normal state of heavenly affairs.

That the real orbits of planets were ellipses was a triumph for the new astronomy and

the right of Western scientists to pursue their investigations independent of theological

doctrines.

One fundamental question could not yet be answered: What held the planets in their

courses? As we shall see, the vortex theory of Descartes and Newton’s theory of universal

gravitation were responses to this challenge.
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Diagram used by Kepler to demonstrate the elliptical orbit of Mars. From his

Astronomia Nova (1609). (From A Short History of Astronomy by Arthur Berry, 1961, Dover

Publications, Inc., N.Y.)

at the table through the rest of the meal, not wishing to leave before the other guests

did. He died 11 days later, after intense suffering. On his deathbed, he turned to Kepler

in particular and begged him to complete some of his tables on planetary motion as

quickly as possible. It is also said that, in the delirium that preceded his death, Tycho

repeated several times, “I hope that I will not appear to have died in vain.” Kepler did

not gain possession of Tycho’s instruments, and they were inadvertently burned. Because

Kepler’s poor eyesight made him an indifferent observer, the loss was of little practical

consequence. The most important scienti c inheritance Tycho left him was a vast wealth

of astronomical observations of unparalleled accuracy. In the hands of Kepler, this store

of information was to produce the next great advance in mathematical astronomy.

Shortly before Tycho’s death, Kepler received the title of Imperial Mathematician

from the Emperor Rudolf; and now he succeeded to Tycho’s position as of cial as-

tronomer to the emperor. But his royal master had the habit of paying his salary only

rarely or in part, so that Kepler was forced to earn additional income by casting the

horoscopes of eminent men. “Mother Astronomy would certainly starve if the daughter

Astrology did not earn their bread,” he is reported to have said.
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Kepler’s model, showing the relations between the planetary spheres and regular

geometric solids. From his Mysterium Cosmographicum (1596). (Extract taken from A

History of Science, Technology and Philosophy in the 16th and 17th Centuries, by A. Wolf.

Reproduced by kind permission of Unwin Hyman Ltd.)

Tycho Brahe (1546–1601) was the pioneer of accurate astronomical observation.

With the help of the king of Denmark, he had constructed in 1576 a splendid observa-

tory on a 2000-acre island near Copenhagen. He equipped this with the most accurate

instruments possible, including a 37-foot quadrant for measuring altitudes. None of the

instruments had lenses, for the telescope was not invented until around 1600. With im-

mense patience and skill, he labored for some 20 years compiling a vastly more extensive

and incomparably more precise set of records than any of his predecessors had possessed.

When the king died, the patronage was not extended by his successor, so Tycho moved to

Prague in 1599, taking his most portable instruments along. There he entered the service

of the eccentric Rudolf II, Holy Roman Emperor and the greatest patron of astrologers

and alchemists in Europe. Kepler accepted Tycho’s invitation to join him and arrived

in Prague early in the following year. It was a fortunate alliance. Tycho was a splendid

observer but a poor mathematician, whereas Kepler was a splendid mathematician but a

poor observer.

Toward the end of 1601, after drinking copiously at a dinner party, Tycho was

suddenly felled by a burst bladder. Adhering to the strict etiquette of the day, he remained


