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Exercises for Unit I  

(Topics from linear algebra) 

 

 

 I.0 : Background 
 
 

Note.    There is no corresponding section in the course notes, but as noted 

at the beginning of Unit I these are a few exercises which involve the 
prerequisites from linear algebra; most if not all of this material will be used 
later in the course. 

 

1.  Suppose that V is a vector space and that x and y are nonzero vectors in V.     

Prove that the set { x, y } is linearly dependent if and only if x and y are nonzero 
multiples of each other.   
 

2.  Let V be a vector space, let S  =  { v1, v2, … , vk } be a set of linearly 

independent vectors in V,  and let W be the subspace spanned by S.   Suppose that z is 

a vector in V which does not lie in W.  Prove that the set S ∪∪∪∪ { z } is linearly 
independent.  
 

3.  Let V be a vector space, let S  =  { v1, v2, … , vk } be a set of linearly 

independent vectors in V,  and let { c1, c2, … , ck } be a sequence of nonzero scalars.  

Prove that S is linearly independent if and only if the set { c1v1, c2v2, … , ckvk } is 
linearly independent. 
 

4.  Let V and W be vector spaces, let T : V →→→→ W be a linear transformation which is 

invertible, and let S  =  { v1, v2, … , vk } be a finite subset of vectors in V.  Prove that S 

is linearly independent if and only if the set T[S]  =  { T(v1), T(v2), … , T(vk) } is. 
 
 

I.1 : Dot products 
 
 

1.  Compute the dot product  a · b, where  a  =  (3, 4)  and  b  =  (2, − 3).  
 

2.  Compute the dot product  a · b, where  a  =  (2, − 3, 4)  and  b  =  (0, 6, 5).  
 

3.  Compute the dot product  a · b, where  a  =  (2, − 1, 1)  and  b  =  (1, 0, − 1).  
 

4.  Determine whether the vectors  a  =  (4, 0)  and  b  =  (1, 1)  are perpendicular, 

linearly dependent, or neither. 
 

5.  Determine whether the vectors  a  =  (2, 18)  and  b  =  (9, − 1)  are 

perpendicular, linearly dependent, or neither. 
 

6.  Determine whether the vectors  a  =  (2, − 3, 1)  and  b  =  ( − 1, − 1, − 1)  
are perpendicular, linearly dependent, or neither. 
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7.  Consider a regular tetrahedron  T  (a pyramid with triangular base, where all 

faces are equilateral triangles) whose vertices are  (0, 0, 0),  (k, k, 0),  (k, 0, k),  and  

(0, k, k)  for some positive constant  k.  Find the degree measure of the angle  ∠∠∠∠ x z y, 

where  z  is the centroid of  T  —  whose coordinates are ( ½ k, ½ k, ½ k)  —  and  x  

and  y  are any two vertices (the answer will be the same for all choices).   
 

8.  Given the vectors  u  =  (2, 3)  and  v  =  (5, 1),  write  u  = u0 + u1,  where  u0 

is a scalar multiple of  v  and  u1  is perpendicular to  v. 
 

9.  Given the vectors  u  =  (2, 1, 2)  and  v  =  (0, 3, 4),  write  u  = u0 + u1,  

where  u0 is a scalar multiple of  v  and  u1  is perpendicular to  v. 
 

10.  Given the vectors  u  =  (5, 6, 2)  and  v  =  ( − 1, 3, 4),  write  u  = u0 + u1,  

where  u0 is a scalar multiple of  v  and  u1  is perpendicular to  v. 
 

11.  Given the vectors  u  =  (−1, 1, 1)  and  v  =  (2, 1, − 3),  write  u  = u0 + u1,  

where  u0 is a scalar multiple of  v  and  u1  is perpendicular to  v. 
 

12. Let  u, v  and  w  be vectors in the real inner product space  RRRR
n
 such that  u · v  

=  2,  v · w  =  − 3,  u · w  =  5,  || u  ||  = 1,  || v  ||  =  2, and  || w  ||  =  7.   Evaluate 

the following expressions: 
 

(a)  (u + v) · (v + w) 

(b)  (2v − w) · (3u + 2w)  

(c)  (u − v − 2w) · (4u + v) 

(d)  || u + v  ||  

(e)  || 2w − v ||  

(f)   || u − 2v + 4w || 
 

13. Apply the Gram – Schmidt orthogonalization process to the following vectors in  

RRRR
n
 with the standard scalar product: 

 

(a )   v1  =  (1, 1, 0),  v2  =  (0, 1, 1),  v3  =  (1, 1, 1) 
 

(b)   v1 = (1, 0, 0, 0),  v2  = (1, 1, 0, 1),  v3   =   (1, 1, 1, 0), xxxxxxxxxxx 

rrrrv4   =  (1, 1, 1, 1) 
 

(c )   v1  =  (1, 2, 1),  v2  =  (2, 1, 0),  v3  =  (−1, −1, 1) 
 

14. Let  { v1, v2, ... , vn }  be an orthonormal basis of the real inner product space  V.  
Show that for every vector  w  in  V  one has the identity  
 

|| w || 

2
   =   〈〈〈〈 w, v1〉〉〉〉  

2
  +  〈〈〈〈 w, v2〉〉〉〉  

2
  +  ...  +  〈〈〈〈 w, vn〉〉〉〉  

2
. 

 

15. Let  W  be the subspace of   RRRR
3
  spanned by  (1, 2, −1). 

 

(a )   Find an explicit formula for the orthogonal projection onto  W  (with 
respect to the  standard scalar product). 
 

(b)   Find the matrix representation of this projection with respect to the 
standard basis of unit vectors. 
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16. Suppose that two nonzero vectors  x  and  y  in the inner product space  V  are 

orthogonal and satisfy  || x ||  =  || y || .   Show that  x + y  and  x − y  are also 

orthogonal and their lengths are equal. 
 
 

I.2 : Cross products 
 
 

1.  Compute the vector cross product  a × b, where  a  =  (2,  − 3, 1)  and  b  =   

(1, − 2, 1).  
 

2.  Compute the vector cross product  a × b, where  a  =  (12,  − 3, 0)  and  b  =   

(− 2, 5, 0).  
 

3.  Compute the vector cross product  a × b, where  a  =  (1,  1, 1)  and  b  =   

(2, 1, −1).  
 

4.  Compute the box product  [a, b, c], where  a  =  (2, 0, 1),  b  =  (0, 3, 0)  and  

c  =  (0, 0, 1).   
 

5.  Compute the triple cross products  (a × b) × c  and  a × (b × c)  for the vectors 

in the preceding exercise. 
 

6.  Compute the box product  [a, b, c], where  a  =  (1, 1, 0),  b  =  (0, 1, 1)  and  

c  =  (1, 0, 1).   
 

7.  Compute the triple cross products  (a × b) × c  and  a × (b × c)  for the vectors 
in the preceding exercise. 
 

8.  Compute the box product  [a, b, c], where  a  =  (1, 3, 1),  b  =  (0, 5, 5)  and  

c  =  (4, 0, 4).   
 

9.  Compute the triple cross products  (a × b) × c  and  a × (b × c)  for the vectors 
in the preceding exercise. 
 

10.  Suppose that  a  and  b are linearly independent vectors in  RRRR
3
, and that  c  is a 

nonzero vector which is perpendicular to both  a  and  b.  Show that  c  is a scalar 

multiple of the cross product  a × b. 
 

11.  Suppose that  c  is a vector in  RRRR
3
, and define a mapping  D  from  RRRR

3
  to itself 

by the formula  Dv  =  c × v.  Verify that  D  is a linear transformation and that it 

satisfies the  Leibniz identity for products: D(a × b)    =    Da × b   +  a × Db   [ Hint : 

Use the Jacobi identity.]  
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I. 3 : Linear varieties 
 
 

1.  Let  L  and  M  be the lines in   RRRR
3
  consisting of all points expressible in the form  

p   =   a  +  t  b, where  
 

a  =  ( 2, 3, 1)  and  b  =  ( 4, 0, − 1)  for the line  L,  and 
 

a  =  ( 2, 3, 1)  and  b  =  ( 2, 2, 1)  for the line  M. 
 

Determine whether  L  and  M  have a common point, and if so then find that point. 
 

2.  Let  L  and  M  be the lines in   RRRR
3
  consisting of all points expressible in the form  

p   =   a  +  t  b, where 
 

a   =   ( 0, 2, − 1)  and  b  =  ( 3, − 1, 1)  for the line  L,  and 
 

a   =   ( 1, − 2, − 3)  and  b  =  ( 4, 1, − 3)  for the line  M . 
 

Determine whether  L  and  M  have a common point, and if so then find that point. 
 

3.  Let  L  and  M  be the lines in   RRRR
3
  consisting of all points expressible in the form  

p   =   a  +  t  b, where 
 

a  =  ( 3, − 2, 1)  and  b  =  ( 2, 5, − 1) for the line  L,  and 
 

a  =  ( 7, 8, − 1)  and  b  =  (− 2, 1, 2)  for the line  M. 
 

Determine whether  L  and  M  have a common point, and if so then find that point. 
 

4.  Find the equation of the plane passing through the points ( 0, 0, 0), ( 1, 2, 3) and 

(−2, 3, 3).   
 

5.  Find the equation of the plane passing through the points ( 1, 2, 3), ( 3, 2, 1) and 

(−1, − 2, 2).   
 

6.  Find the equation of the plane which passes through the point  ( 1, 2, 3)  and is 

parallel to the  xy − plane. 
 

7.  Find the equation of the plane which contains the lines  L  and  M  given by all 
points expressible in the form 
 

 ( 1, 4, 0)  +  t  (− 2, 1, 1)  for the line  L,  and 
 

( 2, 1, 2)  +  t  (−3, 4, − 1)  for the line  M. 
 

8.  Find the line determined by the intersections of the two planes whose equations 

are  5x − 3y + z  =  4   and   x + 4y + 7z  =  1. 
 

9.  Let  L  and  M  be lines in  RRRR
2
  defined respectively by the linear equations  a · x  

=  b  and  p · x  =  q .  Show that if  L  and  M  are parallel (no points in common), then 
the two vectors  a  and  p  are linearly dependent. 
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10.  Prove that the intersection of two linear varieties is a linear variety. 
 

11.  Let  H  and  K  be hyperplanes in  RRRR
n

 ,  and assume that their intersection is 

nonempty.  Prove that the intersection contains a line if  n  is at least  3.  Furthermore, if  

n  is at least  4  and  L  is a line in the intersection, prove that the latter also contains a 
point not on  L.   [ Hint:  The intersection is defined as the set of solutions of a system of 

two linear equations in  n  unknowns.  Look at the set of solutions to the corresponding 
reduced system of equations.] 
 

12.  Let  S  and  T be linear varieties in  RRRR
n  

 which are defined by the systems of 

linear equations  a i  · x  =  b i  and  c j   ·  x  =  d j   respectively.  Prove that their union   

S ∪∪∪∪ T  is the set of all  x  such that  ( a i · x − b i )  ( c j · x − d j )   =   0  for all  i  and  j.   

[ Hint:   If  u · v  =  0  in  RRRR, then either  u  =  0  or else  v  =  0.   As usual, there are 

two inclusions to verify.]  
 

13.  Let  { P1, P2, … , Pn }  be a finite set of points in  RRRR
3
,  write each  P i   in 

coordinate form as  (a i, b i, c i),  and for each  i   let  q i  =  (a i, b i, c i, 1).   Prove that the 

points { P1, P2, … , Pn }   are coplanar if and only if the vectors  { q 1, q 2, … , q n } span 

a proper vector subspace of  RRRR
3
. 

 

 

I.4 : Barycentric coordinates 
 
 

1.  Let a, b, and c be the noncollinear points in  RRRR
2
  whose coordinates are given by 

( − 1, 0),  (1, 0),  and   (0, 1) respectively.   Find the barycentric coordinates for each of 

the following points with respect to  a, b,  and  c.   
 

(a)    (0, 0)     (b)     (1, 1) 

(c)    ( sqrt(2), sqrt(2) )   (d)     (0, 5) 

(e)    (2, − 1)    ( f )     (− ½ , − ⅓ )  
 

2.  Let  V  be a vector space over the real numbers.  A subset  { v0, v1, … , vn }  of  

V  is said to be affinely independent if an arbitrary vector   w   in  V  has at most one 

expansion as a linear combination  w  =  a0 v0  +  a1 v1  +  …  +  an vn  such that   

a0  +  a1  +  …  +  an   =   1  (such expressions are often called affine combinations).    

Prove that the set  { v0, v1, … , vn }  is affinely independent if and only if the set   

{ v1 − v0, … , vn − v0 }  is linearly independent.   Using the symmetry of the indices in 

the definition of affine independence, explain why the set  { v1 − v0, … , vn − v0 }  is 

linearly independent if and only if for each  j   the set of all nonzero vectors of the form   

vi − vj (running over all  i  such that  i  ≠  j) is linearly independent. 
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3.  Suppose  a, b  and  d  are noncollinear points in  RRRR
2
.   Prove that there is a 

unique point  c  distinct from  a, b  and  d  such that the lines  ab  and  cd  are parallel 
and the lines  ad  and  bc  are also parallel, and show that this unique point is given by  

b + d − a.  [ Hint:   If  c  is given as above, note that  c − d   =   b − a  and  c − b   =   

d − a, and let  V  and  W  be the  1− dimensional vector subspaces spanned by  b − a  

and  d – a  respectively.  Express all four lines in the form  x + U  where  x  is one of the 

four points and  U  is one of  V  or  W.  What does the coset property imply if  ab  and  
cd  have a point in common or if  ad  and  bc  have a point in common?] 
 

Remark,   The preceding exercise is closely related to the so – called “parallelogram 

law” for vector addition and reduces to the latter when  a  =  0.  In the figure below  A  

and  B  correspond to  b − a  and  d − a, so that  A + B  corresponds to  c − a  and   

d  =  b + c – a.    
 

 
  

 

(Source:  http://mathworld.wolfram.com/ParallelogramLaw.html) 
 

4.  Suppose that the points  A, B, C, D  form the vertices of a parallelogram in  RRRR
2
, 

and let  E  be the midpoint of  A  and  B.  Prove that the lines  DE  and  AC  meet in a 
point  F  such that 
  

(1) the distance from  A  to  F  is a third of the distance from  A  to C, 
  

(2) the distance from  E  to  F  is a third of the distance from  E  to  D. 
 

Here is a picture that may be helpful in setting up a purely algebraic proof:  
 

 

5.  Suppose that we are given three noncollinear points  a, b, c  in RRRR
2
,  and suppose 

we are also given three arbitrary points in  RRRR
2
  with the following expansions in terms of 

barycentric coordinates: 
 

p1    =    t 1 a  +  u1 b  +  v1 c 

p2    =    t 2 a  +  u2 b  +  v2 c 

p3    =    t 3 a  +  u3 b  +  v3 c 
 

Show that the points  p1 ,  p2 ,  p3   are collinear if and only if we have 
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6.  Using the preceding exercise, prove the following result, which is essentially due 

to Menelaus of Alexandria (c. 70 A. D.  −  c. 130 A. D.)  : 
 

Let  A, B, C  be noncollinear points, and let  D, E, F  be points on the lines  AB, BC  and  
AC  respectively.  Express these points using barycentric coordinates as affine 

combinations  D  =  t A + (1 − t)B,  E  =  u B + (1 − u)C, and  F  =  v C + (1 − v)A.  

Then  D, E  and  F  are collinear if and only if  t u v  =  − (1 − t) (1 − u) (1 − v). 
 

 
 

(Source:  http://mathworld.wolfram.com/MenelausTheorem.html) 
 

7.  In the preceding exercise, suppose that  D, E  and  F  are collinear such that  B  
is halfway between  A  and  D, while  E  is halfway between  B  and  C.  Express the 
vector  F  as a linear combination of  A  and  C.   
 

8.  Using Exercise 5, prove the following result due to G.  Ceva (1647 − 1734) : 
 

Let  A, B, C  be noncollinear points, let  D, E, F  be points on the lines  BC, AC  and  AB  

respectively such that  { D, E, F }  and  { A, B, C }  are disjoint, and suppose that the 

lines  BE  and  CF  intersect at some point  G  which is not equal to  B  or  C.  Express 

the points  D, E, F  in terms of barycentric coordinates as  D   =   t  B + (1 − t) C,   

E   =   u C + (1 − u) A, and F   =   v A + (1 − v) B.  Then the lines  AD,  BE  and  CF  

are concurrent (in other words, the three lines have a point in common) if and only if we 
have   
 

t u v    =    (1 − t) (1 − u) (1 − v). 
 

 
 

(Source: http://mathworld.wolfram.com/CevasTheorem.html) 
 

[ Hint:  The lines  AD, BE  and  CF  are concurrent if and only if the points  A, D  and  G  
are collinear.] 
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9.  In the setting of the preceding exercise, suppose that the three lines  AD,  BE  

and  CF  are concurrent with  t  =   ½   and  v  =  1 − u.  Express the common point  G  

of these lines as a linear combination of  A  and  D  with the coefficients expressed in 

terms of  u. 
 

10.  Let  V  be a vector space over the real numbers, let  S   =   { v0, v1, … , vk }  be 

a subset of  V, and let  T  =  { w0, w1, … , wm }  be a set of vectors in  V  which are 

affine combinations of the vectors in  S.   Suppose that  y  is a vector in  V  which is an 

affine combination of the vectors in  T.   Prove that  y  is also an affine combination of 

the vectors in  S.   
 

11.  Find the barycentric coordinates of the point  (2, 0)  with respect to the 

noncollinear points  (1, 0),  (3, 1),  and  (3, −1). 
 


