the corresponding vertices all pass through the same point. As the principal creator of projective geometry as a separate mathematical discipline, Poncelet can rightly be called the "father of modern geometry."

8.2 Problems

1. To multiply two numbers geometrically, Descartes said:

Let $A B$ be taken as unity, and let it be required to multiply $B D$ by $B C$. I have only to join the points A and C, and draw $D E$ parallel to $C A$; then $B E$ is the product of $B D$ and $B C$.

Show that the length of $B E$ is the product of the lengths of $B D$ and $B C$.

2. In La Géométrie, Descartes constructed the positive solutions to the quadratic equation $x^{2}=a x-b^{2}$, where $b<a / 2$. Given a circle of radius $N L=a / 2$, draw a tangent to L and lay off from the point of contact a length $L M=b$. Then, through M, draw a line parallel to $N L$,

cutting the circle in the points Q and R. Prove that the lengths $M Q$ and $M R$ represent the two positive solutions to $x^{2}=a x-b^{2}$. [Hint: If the parallel to $L M$ through Q cuts the diameter in segments of length y and z, then $y+z=a$ and $y z=b^{2}$.]
3. Assume that in the five-line Pappus problem, four of the lines l_{1}, l_{2}, l_{3}, and l_{4} are parallel and an equal distance apart, and that the fifth line l_{5} is perpendicular to the others. Prove that if l_{5} and l_{2} are
taken as the x-axis and y-axis,

respectively, and if p_{k} denotes the distance of a point $P=(x, y)$ from the line l_{k}, then the locus of all points satisfying $p_{1} p_{3} p_{4}=a p_{2} p_{5}$ is given by

$$
(a+x)(a-x)(2 a-x)=a x y .
$$

This locus, which occurs in La Géométrie, was later called the Cartesian parabola, or trident, by Newton.
4. Show that the equation $x^{3}-x^{2}+2 x+1=0$ has no positive roots. [Hint: Multiply by $x+1$, which does not change the number of positive roots.]
5. Find the number of positive roots of the equation $x^{5}+2 x^{3}-x^{2}+x-1=0$.
6. From Descartes's rule of signs, conclude that the equation $x^{2 n}-1=0$ has $2 n-2$ imaginary roots.
7. Without actually obtaining these roots, show that
(a) $x^{3}+3 x+7=0$ and
(b) $x^{6}-5 x^{5}-7 x^{2}+8 x+20=0$
both possess imaginary roots.
8. Verify the following assertions.
(a) If all the coef cients of an equation are positive and the equation involves no odd powers of x, then all its roots are imaginary.
(b) If all the coef cients of an equation are positive and all terms involve odd powers of x, then zero is the only real root of the equation.
(c) An equation with only positive coef cients cannot have a positive root.
9. Prove that
(a) The equation $x^{3}+a^{2} x+b^{2}=0$ has one negative and two imaginary roots if $b \neq 0$.

