the corresponding vertices all pass through the same point. As the principal creator of projective geometry as a separate mathematical discipline, Poncelet can rightly be called the "father of modern geometry."

8.2 Problems

1. To multiply two numbers geometrically, Descartes said:

Let AB be taken as unity, and let it be required to multiply BD by BC. I have only to join the points A and C, and draw DE parallel to CA; then BE is the product of BD and BC.

Show that the length of *BE* is the product of the lengths of *BD* and *BC*.

2. In *La Géométrie*, Descartes constructed the positive solutions to the quadratic equation $x^2 = ax - b^2$, where b < a/2. Given a circle of radius NL = a/2, draw a tangent to *L* and lay off from the point of contact a length LM = b. Then, through *M*, draw a line parallel to *NL*,

cutting the circle in the points Q and R. Prove that the lengths MQ and MR represent the two positive solutions to $x^2 = ax - b^2$. [*Hint:* If the parallel to LM through Q cuts the diameter in segments of length y and z, then y + z = a and $yz = b^2$.]

3. Assume that in the five-line Pappus problem, four of the lines l_1 , l_2 , l_3 , and l_4 are parallel and an equal distance apart, and that the fifth line l_5 is perpendicular to the others. Prove that if l_5 and l_2 are

taken as the x-axis and y-axis,

respectively, and if p_k denotes the distance of a point P = (x, y) from the line l_k , then the locus of all points satisfying $p_1p_3p_4 = ap_2p_5$ is given by

$$(a+x)(a-x)(2a-x) = axy.$$

This locus, which occurs in *La Géométrie*, was later called the Cartesian parabola, or trident, by Newton.

- 4. Show that the equation $x^3 x^2 + 2x + 1 = 0$ has no positive roots. [*Hint:* Multiply by x + 1, which does not change the number of positive roots.]
- 5. Find the number of positive roots of the equation $x^5 + 2x^3 x^2 + x 1 = 0$.
- 6. From Descartes's rule of signs, conclude that the equation $x^{2n} 1 = 0$ has 2n 2 imaginary roots.
- 7. Without actually obtaining these roots, show that

(a)
$$x^3 + 3x + 7 = 0$$
 and

(b)
$$x^6 - 5x^5 - 7x^2 + 8x + 20 = 0$$

both possess imaginary roots.

- 8. Verify the following assertions.
 - (a) If all the coef cients of an equation are positive and the equation involves no odd powers of x, then all its roots are imaginary.
 - (b) If all the coef cients of an equation are positive and all terms involve odd powers of *x*, then zero is the only real root of the equation.
 - (c) An equation with only positive coef cients cannot have a positive root.
- 9. Prove that
 - (a) The equation x³ + a²x + b² = 0 has one negative and two imaginary roots if b ≠ 0.