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NOTE ON ILLUSTRATIONS. Drawings for several of the solutions in this file are available
in the following file:

http://math.ucr.edu/∼res/math133/math133solutions03.figures.f13.pdf

II . Linear algebra and Euclidean geometry

II.3 : Measurement axioms

1. First of all, f is 1–1. Define kX so that X = A + kX(B − A). Then f(X) = f(Y )
implies kXd(A,B) = kY d(A,B), and since d(A,B) is positive this means kX = kY . Also, if r is
an arbitrary real number and k = r/d(A,B), then it follows that f maps X = A + k(B − A) to r.
Therefore f is onto. Finally, to verify the statement on distances, note that the distance from X
to Y is equal to

|X − Y | =
∣

∣

∣
[A + kX(B − A)] − [A + kY (B − A)]

∣

∣

∣
=

∣

∣

∣
[kX(B − A)] − [kY (B − A)]

∣

∣

∣
=

∣

∣ (kX − kY )(B − A)
∣

∣ = | (kX − kY ) | · | (B − A) | = | (kX − kY ) | · d(A,B) =

| (kX − kY )d(A,B) | = | f(X) − f(Y ) |

which is the identity to be shown.

2. Follow the hint, and let h = g of−1. By construction, h is a 1–1 onto map from the real
numbers to themselves such that |u− v| = |h(u) − h(v)| for all u and v. If k(t) = h(t) − h(0), then
elementary algebra shows that we also have |u − v| = |k(u) − k(v)| but also k(0) = 0. Therefore
we have |k(t)| = |k(t) − k(0)| = |t − 0| = |t| for all t. In particular, this means that for each t we
have k(t) = εt · t, where εt = ±1. We claim that εt is the same for all t 6= 0; for t = 0 the value of
ε does not matter. But suppose that we had k(u) = u and k(v) = −v, where u, v 6= 0. Then we
could not have |u − v| = |k(u) − k(v)|; if u and v have the same sign, then the right hand side is
greater than the left, and if they have opposite signs, then the right hand side is less than the left
(why?). Therefore k(t) = ε · t where ε = ±1, and hence also h(t) = k(t) + h(0) = ±t + h(0), which
is the form required in the exercise.

3. Write things out using barycentric coordinates. We have X − A = (2,−6), while
B − A = (−5,−9) and C − A = (4,−9). Thus we need to solve

(2,−6) = y(−5,−9) + z(4,−9) = (−5y + 4z,−9y − 9z)

and if we do so we obtain z = 48

81
= 16

27
and y = 6

81
= 2

27
; using the barycentric coordinate equation

x + y + z = 1 we also obtain x = 1

3
. Thus all three barycentric coordinates are positive and the

point lie in the interior.
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To work the second part, we have X − A = (10, k − 10), and we need to consider the system

(10, k − 10) = y(−5,−9) + z(4,−9) = (−5y + 4z,−9y − 9z)

and determine those values of k for which z > 0 and x = 1− y − z > 0. Solving for the barycentric
coordinates, we find

z =
140 − 5k

81
, y =

−50 − 4k

81
, x =

9k − 9

81
.

The point will lie in the interior if and only if x and z are positive, which is the same as saying
that the numerators 140 − 5k and 9k − 9 should both be positive. This happens if and only if
1 < k < 28.

4. In this case we need to work the first part of the problem when X is either (30, 200) or
(75, 135), so that X − A is either (23, 190) or (68, 125). The barycentric coordinate z is negative
in the first case, and in the second case we have z > 0 > x, and therefore neither point lies in the
interior of the angle.

5. We now have X − A = (−1, 0), while B − A = (3,−6) and C − A = (−1, 20). Thus we
need to solve

(−1, 0) = y(3,−6) + z(−1,−20) = (3y − z,−6y − 20z)

and if we do so we obtain z = 1

11
, y = − 10

33
, and x = 40

33
, so that the point X lies in the interior of

the angle.

To work the second part, we have X − A = (21, k − 8), and we need to consider the system

(21, k − 8) = (3y − z,−6y − 20z)

and determine those values of k for which z > 0 and x = 1− y − z > 0. Solving for the barycentric
coordinates, we find

z =
3k + 98

−66
, y =

k − 428

−66
, x =

4k − 264

66
.

The point will lie in the interior if and only if x and z are positive, which is the same as saying that
the numerators for x and z should be positive and negative respectively. The inequality 3k+98 < 0
implies k < 0, while the inequality 4k− 164 > 0 implies k > 0. Thus there are no values of k which
satisfy both inequalities, and no points on the given line lie in the interior of the given angle. —
It might be useful to plot points and sketch the angle to confirm this conclusion; in fact, if a point
(u, v) lies in the interior of the given angle then we must have u < −1.

6. Suppose that X ∈ (AC), so that A ∗ X ∗ C is true. By theorems on plane separation,
this implies that A and X lie on the same side of BC, and C and X lie on the same side of AB.
But these are the two criteria for a point to lie in the interior of 6 ABC, and therefore we know
that X lies in the interior of this angle.

7. It looks as if the open ray (DE meets the triangle in exactly one point. See the
illustration in the file of figures.

8. The segment (AC) should be corrected to (AX). With this correction, proceed as
follows: If Y lies on (AX), then A ∗ Y ∗ X is true, so that X and Y lie on the same sides of AB
and AC. However, B ∗ X ∗ C implies that X and B lie on the same side of AC and X and C lie
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on the same side of AB. Therefore we also know that Y and B lie on the same side of AC and Y
and C lie on the same side of AB. All that remains is to show that Y and A lie on the same side
of BC. But this follows because A ∗ Y ∗ X and X ∈ BC.

9. By the Protractor Postulate there is a point E on the side of BC opposite A such that
| 6 EBC| = | 6 ABC|, and by a consequence of the Ruler Postulate there is a point D ∈ (AE such
that d(D,B) = d(A,B). By construction the distance equation holds, and the angle measurement
equation holds because [AD = [AE. Finally D is on the side of BC opposite A because D ∈ (BE,
while E and A lie on opposite sides and all points of (BE lie on a single side of BC.

10. We shall first dispose of the main part of the exercise; namely, showing that if D lies
in the interior of 6 BAC then D ∈ (XY ) where X and Y are on ∆ABC but do not lie on a the
same side. — The interior of the triangle is contained in the interior of 6 BAC, so by the Crossbar
Theorem we know that (AD meets (BC) in some point E. It will suffice to show that we have the
order relationship A∗D∗E (take A = X and E = Y ). But this follows because A and D are on the
same side of BC, which implies either A ∗D ∗E or D ∗A ∗E. The second of these is incompatible
with the known condition E ∈ (AD, so therefore the first must be true and we have shown what
was required for the main part of the problem.

We now turn to the converse, assuming that D ∈ (XY ) where X and Y lie on ∆ABC but do
not lie on the same side. There are two cases.

Case 1. One of X,Y is a vertex. Relabeling the vertices if necessary, without loss of
generality we may assume that X = A, so that Y must lie on (BC). The objective is to prove that
D lies in the interior of ∆ABC.

We know that A ∗ D ∗ Y and B ∗ Y ∗ C. The first of these implies that D cannot lie on either
AB or AC, for if (say) D ∈ AB then AY = AD = AB would imply that Y and B lie on both AB
and BC, which is impossible; similarly, we can conclude that D 6∈ AC. Therefore A ∗ D ∗ Y and
B ∗ Y ∗ C imply that D lies in the interior of 6 BAC. On the other hand, A ∗D ∗ Y and B ∗ Y ∗ C
imply that A and D lie on the same side of BC, and this completes the proof that D must lie in
the interior of ∆ABC.

Case 2. Neither of X,Y is a vertex. Relabeling the vertices if necessary, without loss of
generality we may assume that X ∈ (AB) and Y ∈ (AC). It follows immediately that D lies in the
interior of 6 BAC, so it is only necessary to prove that A and D lie on the same side of BC.

By the Crossbar Theorem we know that (AD meets (BC) in some point Z, and by the definition
of an open ray we know that one of A ∗D ∗Z, D = Z or A ∗Z ∗D is true. It will suffice to exclude
the last two possibilities, leaving us with the conclusion that A ∗ D ∗ Z and hence A and D lie on
the same side of BC, so that D lies in the interior of ∆ABC, which was our objective.

Since we have A ∗ X ∗ B and A ∗ Y ∗ C it follows that A,X and Y all lie on the same side
of BC. But we also have X ∗ D ∗ Y , so Y must also lie on this side of BC; combining these, we
conclude that D and A lie on the same side of BC, and as noted in the preceding paragraph this
completes the proof that D lies in the interior of ∆ABC.

II.4 : Congruence, superposition and isometries

1. Follow the hint. By SSS we have ∆BDC ∼= ∆BDE, so that | 6 EDB| = | 6 CDB|. Since
D lies on the segment (CE) it is in the interior of 6 EBA = 6 ABC, and therefore by additivity we
have

| 6 ABC| = | 6 EDB| + | 6 CDB| = 2 · | 6 DBC| = 2 · | 6 DBA| .
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This shows that the ray (BD bisects 6 ABC and proves existence.

To prove uniqueness, suppose that (BG is an arbitrary bisector ray. Since (BG lies in the
interior of 6 BAC, it follows that it lies on the same side of AB as C. By hypothesis its measure is
1

2
| 6 ABC|, which is the same as | 6 ABD|. Therefore the uniqueness part of the Protractor Postulate

implies that [BG = [BD.

2. Take a 3–4–5 right triangle with a right angle at B and d(A,B) = 3. Then ∆ABC ∼=
∆BCA is false because 3 = d(A,B) 6= 4 = d(B,C).

3. Suppose that ∆ABC ∼= ∆DEF . Then d(A,B) = d(D,E), d(A,C) = d(D,F ), and
d(B,C) = d(E,F ). If we rewrite these as d(A,C) = d(D,F ), d(A,B) = d(D,E) and d(C,B) =
d(B,C) = d(E,F ) = d(F,E), then we may apply SSS to conclude that ∆ACB ∼= ∆DFE.

Similarly, we have d(B,C) = d(E,F ), d(B,A) = d(A,B) = d(D,E) = d(E,D) and d(C,A) =
d(A,C) = d(D,F ) = d(F,D), so we may now apply SSS to conclude that ∆BCA ∼= ∆EFD.

4. By the Isosceles Triangle Theorem and the identities 6 DAB = 6 CAB and 6 EBA =
6 CBA we have

| 6 DAB| = | 6 CAB| = | 6 CBA| = | 6 EBA|

and the midpoint conditions together with the isosceles triangle assumption imply d(A,D) =
1

2
d(A,C) = 1

2
d(A,C) = d(B,E). Since d(A,B) = d(B,A), by SAS we have ∆DAB ∼= ∆EBA.

5. The congruence assumption implies d(A,B) = d(D,E) and | 6 CBA| = | 6 FED|. Since
6 GBA = 6 CBA (as sets!!) and 6 HED = 6 FED, it also follows that | 6 GBA| = | 6 HED|.
Furthermore, congruence and the bisection hypotheses imply that

| 6 GAB| = 1

2
| 6 CAB| = 1

2
| 6 FDE| = | 6 HDE|

and therefore we have ∆GAB ∼= ∆HDE.

6. We now have d(A,B) = d(D,E) and

| 6 CBA| = | 6 GBA| = | 6 HED| = | 6 FED| .

In addition, congruence and angle bisection imply that

| 6 BAC| = 2 · | 6 GAB| = 2 · | 6 HDE| = | 6 EDF | .

Therefore the ASA congruence axiom implies that ∆ABC ∼= ∆DEF .

7. An affine transformation T has the property

T
(

sa + (1 − s)b
)

= sT (a) + (1 − s)T (b)

so a point c is between two points a and b of K if and only if its image T (c) is between the
two image points T (a) and (b). Therefore c is between two points of K if and only if its image
is between two points of the image of K under the affine transformation. Therefore, if c is not
between two points of K, then its image cannot be between two points in the image of K.

8. (a) This is just a simple partial derivative calculation involving polynomials.

(b) We have T1(x) = A1x+b1 and T2(x) = A2x+b2 where A1 and A2 are invertible matrices
and b1 and b2 are vectors. The composite T1

oT2 sends x to A1A2x + A1b2 + b1. Therefore A1A2

gives the matrix part of T1
oT2.
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(c) D(T ) is the identity if and only if for each i the partial derivatives of the ith coordinate
functions are equal to the partial derivatives of the standard function xi. But the latter holds if and
only if the ith coordinate function has the form xi + bi for some constant bi, and this is precisely
the condition for T to be a translation.

(d) This can be done directly, but we shall do it using the ideas described above. We have

D
(

S−1 oT oS
)

= D(S−1)D(T )D(S)

and te relation S−1 oS = identity implies D(S−1)D(S) = I, so that D(S−1) = D(S)−1. If we now
assume T above is a translation, this gives us

D
(

S−1 oT oS
)

= D(S−1)D(T )D(S) = D(S−1) I D(S) = I

which shows that S−1TS must be a translation.

9. Follow the hints. By construction every DS(t) is equal to the diagonal matrix whose
entries in order are 1 and −1. The product of this matrix with itself is the identity, and therefore
D applied to S(a)S(b) is the identity. By the preceding exercise, S(a)S(b) must be a translation.
We can find the translation vector fairly directly by evaluating at (0, 0), and if we do so we fine
that the twofold composite sends (0, 0) to (0, 2a − 2b).

Applying this to the threefold composite, we obtain

S(a)S(b)S(c)(x1 , x2) = S(a)(x1, x2 + 2b − 2c) = (x1, 2a + 2c − 2b − x2)

which means that the threefold composite is S(d), where d = a + c − b.

10. The most direct way to do this is to prove that there are nonzero vectors y and z such
that A sends y to itself, A sends z to −z, and the vectors y and z are perpendicular. We can then
get the desired orthonormal vectors by letting u and v be y and z multiplied by the reciprocals of
their repsective lengths.

We can find nonzero vectors y and z as above if and only if the equations (A + I)x = 0 and
if and only if the equations (A − I)x = 0 have nontrivial solutions, which is the same as showing
that the determinants of A ± I are equal to zero. Direct computation shows that

0 = det(A − kI) = k2 − cos2 θ − sin2 θ = k2 − 1

and hence the determinant is zero if k = ±1. This yields the vectors y and z.

It is possible to solve directly for these vectors and show they are perpendicular by direct
computation, but we shall give a conceptual proof which does not require finding the vectors
explicitly. Since A is orthogonal we have

〈y, z〉 = 〈Ay, Az〉 = 〈y, −z〉 = −〈y, z〉 .

The right hand side is the negative of the left hand side, and this can only happen if both sides are
zero. Therefore the two vectors we want are perpendicular to each other.

11. Follow the hint. To show that A − I is invertible, compute its determinant; this turns
out to be 2 − 2 cos θ, which is zero if and only if θ is an integral multiple of 2π. We have excluded
these choices for θ, and hence the matrix will always be invertible in our situation.
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Applying this to the question in the exercise, we need to show there is a unique z such that
T (z) = Az + b, or equivalently there is a unique solution to the equation (A − I)z = −b. Since
A− I is invertible, there is indeed a unique solution to this equation, and this suffices to prove the
exercise.

II.5 : Euclidean parallelism

1. Follow the hint, and write L = x + V and M = y + W . If L and M were parallel then
we would have V = W , so since they are not we know that V 6= W . This implies that V and W
are both proper vector subspaces of U = V + W . Now V and W each have one element bases
given by the nonzero vectors v and w respectively, so V + W is spanned by {v, w }, which means
that dimU ≤ 2; since U properly contains V and W , it follows that its dimension is exactly 2.

Now let P = x + U , so that L ⊂ P . We claim that P ∩M = ∅, and we shall do so by reductio

ad absurdum. So assume M and P meet at the point z. Then by the Coset Property we know that
M = z + W and P = z + U . Thus we have x = z + bv + cw for suitable scalars b, c. Rearranging
this, we obtain

x − bv = y + cw

and by the first sentence of this proof the latter yields a point on L ∩ M . But we are given that
L∩M = ∅, so this is a contradiction. Therefore the line M and the plane P cannot have any points
in common.

2. The lines S ∩ P and S ∩ Q both lie in the plane S. If the intersection were nonempty
and X belonged to that intersection, then we would have

X ∈ (S ∩ P ) ∩ (S ∩ Q) = (S ∩ P ∩ Q) ⊂ P ∩ Q

which contradicts the hypothesis that P ∩ Q = ∅.

3. We shall do this problem using linear algebra. Following the hint, we first show that if
S is a plane and v 6∈ S, then there is a unique plane T such that v ∈ T and S ∩ T = ∅.

Existence. Write S = u + W where W is a 2-dimensional vector subspace of R
3, and let

T = v + W . Then T 6= S because v ∈ T but v 6∈ S, and therefore by the Coset Property for
translates of the same subspace we know that S and T must be disjoint.

Uniqueness. Suppose we have an arbitrary 2-plane y + W ′ for some 2-dimensional vector
subspace W ′. By the Coset Property we have y+W ′ = v+W ′. We claim that v+W and v+W ′

have a point in common if W 6= W ′. The latter means that W +W ′ properly contains either W or
W ′; this proper containment implies that dimW + W ′ ≥ 3, and since W +W ′ is a vector subspace
of R

3 it follows that W + W ′ = R
3. This in turn implies that dimW ∩W ′ = 1. By the proof of

the dimension theorem for subspaces of a vector space, it follows that there are vectors y1, y2, y3

such that the first one defines a basis for W ∩ W ′, the first two define a basis for W , and the first
and last define a basis for W ′, so that all three form a basis for R

3.

We may now write
v − u = t1 y1 + t2 y2 + t3 y3

for suitable scalars ti, and we may rewrite this equation as follows:

v − t3 y3 = u + t1 y1 + t2 y2
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The expression on the right hand side of this equation lies in v + W ′ = T , whild the expression on
the left hand side lies in u + W = S, and thus we conclude that S ∩ T 6= ∅. — This completes the
proof of the assertion in the second sentence of this solution.

Conclusion of the argument. Suppose that z ∈ P ∩Q. Then P and Q are two planes through
z such that each is disjoint from S. Since this contradicts that result that we established above, it
follows that there cannot be a point which lies on both P and Q.

4. Again follow the hint; we shall use the notation introduced there.

The vector Q(z) is perpendicular to e and f by the argument for deriving the Gram-Schmidt
orthonormalization process (see Section I.1 of the notes). Since v and w are linear combinations
of e and f, it follows that Q(z) is also perpendicular to v and w. The Pythagorean principle for
inner products now implies that

∣

∣z − se− tf
∣

∣

2
= |Q(z)|2 + |s − 〈z, e〉e|2 + |t − 〈z, f〉f |2

and this expression takes its minimum value for the values of s and t which make the last two
summands equal to zero. Now this is precisely the condition under which z−se−tf is perpendicular
to (all linear combinations of) e and f.

Finally since e and f span the same subspace of R
3 as v and w, it follows that the set of all

vectors expressible in the form z−se− tf is identical to the corresponding set of vectors expressible
as z − av − bw, and therefore the minimum values for the (squares of the) lengths of vectors of
the two types must also be equal. Combining this with the previous observations, we obtain the
conclusion stated in the exercise.

5. Write x = pa and y = b + q(c − b), where p and q are scalars. Then we have

y − x = b + q(c− b) + pa

and since the original lines are skew lines we know that a and c − b are linearly independent by
(the solution to) Exercise 1. If we now apply Exercise 2, we see that the length of the displayed
vector is minimized when the vector in question is perpendicular to a and c−b, which is the same
as saying that the line xy is perpendicular to 0a and bc.

6. It will suffice to show that B−A and D−C are nonzero multiples of each other (so that
the lines AB and CD are either equal or parallel, and we know they are not equal), and similarly
that D − A and B − C are nonzero multiples of each other.

By our hypotheses we have A = 1

2
(W +X), B = 1

2
(X +Y ), C = 1

2
(Y +Z), and D = 1

2
(Z+W ),

so that
B − A = 1

2
(Y − W ), D − C = 1

2
(W − Y )

and this shows AB is parallel to CD. Similarly, we have

D − A = 1

2
(Z − X), C − B = 1

2
(Z − X)

and this shows AD is parallel to BC.

7. Let M be the unique line through D which is equal or parallel to AC. Then B 6∈ M ,
and since AC has points in common with AB and BC it follows that M also has points X and Y
in common with these two lines.
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There are three cases, depending upon whether

(i) D ∈ AC,

(ii) D and B lie on the same side of AC,

(iii) D and B lie on opposite sides of AC.

In the first case it suffices to show that D ∈ (AC), and in the other cases it we need to show that
X ∈ (BA and Y ∈ (BC. Note that X 6= A and Y 6= C in the last two cases because M must be
parallel to AC.

In the first case, we have D ∈ AC and D cannot be A or C. Now A ∗ C ∗ D would imply A
and D lie on opposite sides of BC, and D ∗ A ∗ C would imply C and D lie on opposite sides of
AB, so the condition D ∈ Int 6 ABC forces the conclusion A ∗ D ∗ C, so that D ∈ (AC).

In the second case, by the Crossbar Theorem we know that (BD and (AC) have a point E in
common. We claim that B ∗ D ∗ E holds. Since E ∈ (BD, the other possibilities are D = E or
B ∗ E ∗ D. The first of these is impossible because we have a pair of parallel lines such that one
contains D and the other contains E, and the second contradicts our assumption that B and D lie
on the same side of AC. Therefore the line M contains a point between A and E. If we apply this
and Pasch’s Theorem to ∆ABE and ∆CBE, we find that M must contain points on (AB) and
(BC) because the line AC = AE = CE is parallel to M . These points on M must be X and Y
respectively, so we know that X ∈ (BA) ⊂ (BA and Y ∈ (BC) ⊂ (BC.

The third case is similar, and once again we have the point E, but this time we claim that
B ∗ E ∗ D holds. As before, we cannot have D = E, but now B ∗ D ∗ E would imply that D and
B were on the same side of AC, so we are forced to conclude that B ∗E ∗D. In this case we know
that the line AC contains the point E betwween B and D. If we apply this and Pasch’s Theorem
to ∆XBD and ∆Y BD, we find that AC must contain points on (BX) and (BY ) because the line
M = DX = DY is parallel to AC. These points on AC must be A and C respectively, so we know
that A ∈ (BX) and C ∈ (BY ). Therefore we have B ∗ A ∗ X and B ∗ C ∗ Y , which means that
X ∈ (BA and Y ∈ (BC.
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