Equality in the Triangle Inequality

This document provides details for the approach taken in the lectures, which starts by answer-
ing the question for the real line:

Suppose that we are given three distinct points t1, to and t3 on the real line. Under what
conditions do we have |tz —t1| = |to —t1| + |t3 — t2|?

Solution. There are six possible ways that the points can be ordered:

1T < ta < t3
t1 < ts3 < to
to < t1 < t3
to < ty3 < t1
ty3 < t1 < tg
ts3 < tg < t1

We shall consider these cases in order.

Ift7 < to < t3then tg3 —t1, to — t1 and t3 — to are all positive so that

ts—t1 = (tz—t2) + (t2a—t1)
can be rewritten as |ts — t1| = [|t2 — t1] + |t3 — t2|. Therefore THE DISTANCES ADD IN THIS
CASE .=
If t1 < ts3 < ta, then
‘tg—tl‘ = to—t1 > tz3—1t1 = ’t3—t1’
which means that |[t5 —t1| = |t2 —t1| + |t3 — t2| cannot be true in this case and accordingly THE

DISTANCES DO NOT ADD IN THIS CASE .=

Ifto < t; < t3, then by the preceding reasoning we have |t3—ta| = |t3—t1|+|t1 —ta| > |t3—11]
which means that THE DISTANCES DO NOT ADD IN THIS CASE.=

Ifto < t3 < t1, then by the preceding reasoning we have [t; —ta| = |t1 —t3|+|ts—ta| > |t3—11]
which means that THE DISTANCES DO NOT ADD IN THIS CASE.x

Ifto < t3 < t1, then by the preceding reasoning we have |t; —to| = |t3—t2|+|t1 —t3| > |[ts—11]
which means that THE DISTANCES DO NOT ADD IN THIS CASE.x

If t3 < to < t1 then t3 —t1, to — t1 and t3 — to are all negative so that
t3 —t1 = (t3 —tz) + (tz —tl)

can be rewritten as —|t3 —t;| = —|ta —t1]| — |t3 — t2|. The latter is equivalent to |t3 —t1| = |[ta —
t1| + |ts — ta| Therefore THE DISTANCES ADD IN THIS CASE.=

To summarize, the distances add if and only if either t; < to < tzortsy < to < t;.m



The general case of three collinear points

Assume now that z, y and z are collinear points in the coordinate plane R?. Then we know
that
y = x + t(z—x), where teR.

Then |y —z| = |t(z—=z)| = |t|-|z— x| and similarly [z —y| = |1 —t)(z —2)| = [1—t] |z —=x|.

Suppose now that |z — x| = |y — x| + |z — y|. If we substitute the values for the right hand
summands in the previous paragraph and note that |z —z| > 0, we see that 1 = |¢|4 |1 —¢|. Since
a = |bl +|c| and a > 0 imply a > b and a > ¢, it follows that ¢ < 1 and 1 —¢ < 1. The latter is
equivalent to t > 0, and therefore we have shown that if the inequality in the first sentence of this
paragraph holds then 0 < ¢t < 1. — Conversely, if the latter holds then 1 = |¢| 4+ |1 —¢| and hence
the reasoning of the preceding paragraph implies that |z — 2| = |y — x| + |z — y|=

The preceding duscussion also yields an alternate approach to part of the following result in
geometrynotes01.£13.pdf: If |z +y| = |z|+ |y| and x,y # 0 then x is a positive multiple of y and
vice versa. PROOF: If z,y # 0 then x = cy where ¢ > 0, then y = dx where d > 1/c¢ (so d > 0),
and hence it suffices to to prove the first statement. As in the notes, by the Schwarz Inequality we
know that x is a nonzero multiple of y, say x = cy; we need to show that ¢ > 0. We have

Ltel-fzf = [A+z] = |ztec] = [e+yl = [z + Jyl =

[ + ex| = 2| + |e[-|z] = (T+]c])-|2|

which implies that |1 +¢| = 1+ |c|. This equation holds if and only if ¢ > 0, and since ¢ # 0 it
follows that ¢ > 0.



