
Equality in the Triangle Inequality

This document provides details for the approach taken in the lectures, which starts by answer-
ing the question for the real line:

Suppose that we are given three distinct points t1, t2 and t3 on the real line. Under what
conditions do we have |t3 − t1| = |t2 − t1|+ |t3 − t2|?

Solution. There are six possible ways that the points can be ordered:

t1 < t2 < t3
t1 < t3 < t2
t2 < t1 < t3
t2 < t3 < t1
t3 < t1 < t2
t3 < t2 < t1

We shall consider these cases in order.

If t1 < t2 < t3 then t3 − t1, t2 − t1 and t3 − t2 are all positive so that

t3 − t1 = (t3 − t2) + (t2 − t1)

can be rewritten as |t3 − t1| = |t2 − t1| + |t3 − t2|. Therefore THE DISTANCES ADD IN THIS
CASE.

If t1 < t3 < t2, then

|t2 − t1| = t2 − t1 > t3 − t1 = |t3 − t1|

which means that |t3 − t1| = |t2 − t1|+ |t3 − t2| cannot be true in this case and accordingly THE
DISTANCES DO NOT ADD IN THIS CASE.

If t2 < t1 < t3, then by the preceding reasoning we have |t3−t2| = |t3−t1|+|t1−t2| > |t3−t1|
which means that THE DISTANCES DO NOT ADD IN THIS CASE.

If t2 < t3 < t1, then by the preceding reasoning we have |t1−t2| = |t1−t3|+|t3−t2| > |t3−t1|
which means that THE DISTANCES DO NOT ADD IN THIS CASE.

If t2 < t3 < t1, then by the preceding reasoning we have |t1−t2| = |t3−t2|+|t1−t3| > |t3−t1|
which means that THE DISTANCES DO NOT ADD IN THIS CASE.

If t3 < t2 < t1 then t3 − t1, t2 − t1 and t3 − t2 are all negative so that

t3 − t1 = (t3 − t2) + (t2 − t1)

can be rewritten as −|t3− t1| = −|t2− t1| − |t3− t2|. The latter is equivalent to |t3− t1| = |t2−
t1|+ |t3 − t2| Therefore THE DISTANCES ADD IN THIS CASE.

To summarize, the distances add if and only if either t1 < t2 < t3 or t3 < t2 < t1.



The general case of three collinear points

Assume now that x, y and z are collinear points in the coordinate plane R2. Then we know
that

y = x + t(z − x) , where t ∈ R .

Then |y− x| = |t(z− x)| = |t| · |z− x| and similarly |z− y| = |(1− t)(z− x)| = |1− t| · |z− x|.

Suppose now that |z − x| = |y − x| + |z − y|. If we substitute the values for the right hand
summands in the previous paragraph and note that |z−x| > 0, we see that 1 = |t|+ |1− t|. Since
a = |b| + |c| and a > 0 imply a > b and a > c, it follows that t < 1 and 1 − t < 1. The latter is
equivalent to t > 0, and therefore we have shown that if the inequality in the first sentence of this
paragraph holds then 0 < t < 1. — Conversely, if the latter holds then 1 = |t|+ |1− t| and hence
the reasoning of the preceding paragraph implies that |z − x| = |y − x|+ |z − y|.

The preceding duscussion also yields an alternate approach to part of the following result in
geometrynotes01.f13.pdf: If |x+y| = |x|+ |y| and x, y 6= 0 then x is a positive multiple of y and
vice versa. PROOF: If x, y 6= 0 then x = cy where c > 0, then y = dx where d > 1/c (so d > 0),
and hence it suffices to to prove the first statement. As in the notes, by the Schwarz Inequality we
know that x is a nonzero multiple of y, say x = cy; we need to show that c > 0. We have

|1 + c| · |x| = |(1 + c)x| = |x + cx| = |x + y| = |x| + |y| =

|x| + |cx| = |x| + |c| · |x| = (1 + |c|) · |x|

which implies that |1 + c| = 1 + |c|. This equation holds if and only if c ≥ 0, and since c 6= 0 it
follows that c > 0.


