Equality in the Triangle Inequality

This document provides details for the approach taken in the lectures, which starts by answering the question for the real line:

Suppose that we are given three distinct points t_{1}, t_{2} and t_{3} on the real line. Under what conditions do we have $\left|t_{3}-t_{1}\right|=\left|t_{2}-t_{1}\right|+\left|t_{3}-t_{2}\right|$?

Solution. There are six possible ways that the points can be ordered:

$$
\begin{aligned}
& t_{1}<t_{2}<t_{3} \\
& t_{1}<t_{3}<t_{2} \\
& t_{2}<t_{1}<t_{3} \\
& t_{2}<t_{3}<t_{1} \\
& t_{3}<t_{1}<t_{2} \\
& t_{3}<t_{2}<t_{1}
\end{aligned}
$$

We shall consider these cases in order.
If $t_{1}<t_{2}<t_{3}$ then $t_{3}-t_{1}, t_{2}-t_{1}$ and $t_{3}-t_{2}$ are all positive so that

$$
t_{3}-t_{1}=\left(t_{3}-t_{2}\right)+\left(t_{2}-t_{1}\right)
$$

can be rewritten as $\left|t_{3}-t_{1}\right|=\left|t_{2}-t_{1}\right|+\left|t_{3}-t_{2}\right|$. Therefore THE DISTANCES ADD IN THIS CASE.■

If $t_{1}<t_{3}<t_{2}$, then

$$
\left|t_{2}-t_{1}\right|=t_{2}-t_{1}>t_{3}-t_{1}=\left|t_{3}-t_{1}\right|
$$

which means that $\left|t_{3}-t_{1}\right|=\left|t_{2}-t_{1}\right|+\left|t_{3}-t_{2}\right|$ cannot be true in this case and accordingly THE DISTANCES DO NOT ADD IN THIS CASE.■

If $t_{2}<t_{1}<t_{3}$, then by the preceding reasoning we have $\left|t_{3}-t_{2}\right|=\left|t_{3}-t_{1}\right|+\left|t_{1}-t_{2}\right|>\left|t_{3}-t_{1}\right|$ which means that THE DISTANCES DO NOT ADD IN THIS CASE.■

If $t_{2}<t_{3}<t_{1}$, then by the preceding reasoning we have $\left|t_{1}-t_{2}\right|=\left|t_{1}-t_{3}\right|+\left|t_{3}-t_{2}\right|>\left|t_{3}-t_{1}\right|$ which means that THE DISTANCES DO NOT ADD IN THIS CASE.■

If $t_{2}<t_{3}<t_{1}$, then by the preceding reasoning we have $\left|t_{1}-t_{2}\right|=\left|t_{3}-t_{2}\right|+\left|t_{1}-t_{3}\right|>\left|t_{3}-t_{1}\right|$ which means that THE DISTANCES DO NOT ADD IN THIS CASE.■

If $t_{3}<t_{2}<t_{1}$ then $t_{3}-t_{1}, t_{2}-t_{1}$ and $t_{3}-t_{2}$ are all negative so that

$$
t_{3}-t_{1}=\left(t_{3}-t_{2}\right)+\left(t_{2}-t_{1}\right)
$$

can be rewritten as $-\left|t_{3}-t_{1}\right|=-\left|t_{2}-t_{1}\right|-\left|t_{3}-t_{2}\right|$. The latter is equivalent to $\left|t_{3}-t_{1}\right|=\mid t_{2}-$ $t_{1}\left|+\left|t_{3}-t_{2}\right|\right.$ Therefore THE DISTANCES ADD IN THIS CASE.■

To summarize, the distances add if and only if either $t_{1}<t_{2}<t_{3}$ or $t_{3}<t_{2}<t_{1} . ■$

Assume now that x, y and z are collinear points in the coordinate plane \mathbb{R}^{2}. Then we know that

$$
y=x+t(z-x), \quad \text { where } \quad t \in \mathbb{R}
$$

Then $|y-x|=|t(z-x)|=|t| \cdot|z-x|$ and similarly $|z-y|=|(1-t)(z-x)|=|1-t| \cdot|z-x|$.
Suppose now that $|z-x|=|y-x|+|z-y|$. If we substitute the values for the right hand summands in the previous paragraph and note that $|z-x|>0$, we see that $1=|t|+|1-t|$. Since $a=|b|+|c|$ and $a>0$ imply $a>b$ and $a>c$, it follows that $t<1$ and $1-t<1$. The latter is equivalent to $t>0$, and therefore we have shown that if the inequality in the first sentence of this paragraph holds then $0<t<1$. - Conversely, if the latter holds then $1=|t|+|1-t|$ and hence the reasoning of the preceding paragraph implies that $|z-x|=|y-x|+|z-y| . ■$

The preceding duscussion also yields an alternate approach to part of the following result in geometrynotes01.f13.pdf: If $|x+y|=|x|+|y|$ and $x, y \neq 0$ then x is a positive multiple of y and vice versa. PROOF: If $x, y \neq 0$ then $x=c y$ where $c>0$, then $y=d x$ where $d>1 / c($ so $d>0)$, and hence it suffices to to prove the first statement. As in the notes, by the Schwarz Inequality we know that x is a nonzero multiple of y, say $x=c y$; we need to show that $c>0$. We have

$$
\begin{gathered}
|1+c| \cdot|x|=|(1+c) x|=|x+c x|=|x+y|=|x|+|y|= \\
|x|+|c x|=|x|+|c| \cdot|x|=(1+|c|) \cdot|x|
\end{gathered}
$$

which implies that $|1+c|=1+|c|$. This equation holds if and only if $c \geq 0$, and since $c \neq 0$ it follows that $c>0$.

