3

The Geometry of

Vector Spaces

INTRODUCTORY EXAMPLE

The Platonic Solids

In the city of Athens in 387 B.C., the Greek philosopher
Plato founded an Academy, sometimes referred to as the
world’s first university. While the curriculum included
astronomy, biology, political theory, and philosophy, the
subject closest to his heart was geometry. Indeed, inscribed
over the doors of his academy were these words: “Let no
one destitute of geometry enter my doors.”

The Greeks were greatly impressed by geometric
patterns such as the regular solids. A polyhedron is called
regular if its faces are congruent regular polygons and all
the angles at the vertices are equal. As early as 100 years
before Plato, the Pythagoreans knew at least three of the
regular solids: the tetrahedron (4 triangular faces), the cube
(6 square faces), and the octahedron (8 triangular faces).
(See Figure 1.) These shapes occur naturally as crystals of
common minerals. There are only five such regular solids,
the remaining two being the dodecahedron (12 pentagonal
faces) and the icosahedron (20 triangular faces).

Plato discussed the basic theory of these five solids in
the dialogue Timaeus, and since then they have carried his
name: the Platonic solids.

For centuries there was no need to envision geometric
objects in more than three dimensions. But nowadays
mathematicians regularly deal with objects in vector spaces

having four, five, or even hundreds of dimensions. It is not
necessarily clear what geometrical properties one might
ascribe to these objects in higher dimensions.

For example, what properties do lines have in
2-space and planes have in 3-space that would be useful
in higher dimensions? How can one characterize such
objects? Sections 8.1 and 8.4 provide some answers.
The hyperplanes of Section 8.4 will be important for
understanding the multidimensional nature of the linear
programming problems in Chapter 9.

What would the analogue of a polyhedron “look
like” in more than three dimensions? A partial answer
is provided by two-dimensional projections of the four-
dimensional object, created in a manner analogous to two-
dimensional projections of a three-dimensional object.
Section 8.5 illustrates this idea for the four-dimensional
“cube” and the four-dimensional “simplex.”

The study of geometry in higher dimensions not
only provides new ways of visualizing abstract algebraic
concepts, but also creates tools that may be applied in R>.
For instance, Sections 8.2 and 8.6 include applications to
computer graphics, and Section 8.5 outlines a proof (in
Exercise 22) that there are only five regular polyhedra in
R3.
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438 CHAPTER 8 The Geometry of Vector Spaces

FIGURE 1 The five Platonic solids.

Most applications in earlier chapters involved algebraic calculations with subspaces and
linear combinations of vectors. This chapter studies sets of vectors that can be visualized
as geometric objects such as line segments, polygons, and solid objects. Individual
vectors are viewed as points. The concepts introduced here are used in computer graph-
ics, linear programming (in Chapter 9), and other areas of mathematics.!

Throughout the chapter, sets of vectors are described by linear combinations, but
with various restrictions on the weights used in the combinations. For instance, in Sec-
tion 8.1, the sum of the weights is 1, while in Section 8.2, the weights are positive and
sum to 1. The visualizations are in R? or R?, of course, but the concepts also apply to
R™ and other vector spaces.

AFFINE COMBINATIONS

An affine combination of vectors is a special kind of linear combination. Given vec-
tors (or “points”) v, Vo, ..., v, in R" and scalars ¢y, ..., ¢,, an affine combination of
Vi,V2,...,V, is a linear combination

Civyi + -+ Cpvp

such that the weights satisfy ¢; +--- + ¢, = 1.

I'See Foley, van Dam, Feiner, and Hughes, Computer Graphics— Principles and Practice,2nd edition
(Boston: Addison-Wesley, 1996), pp. 1083—1112. That material also discusses coordinate-free “affine
spaces.”
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The set of all affine combinations of points in a set S is called the affine hull (or
affine span) of S, denoted by aff S.

The affine hull of a single point vy is just the set {v; }, since it has the form ¢; v| where
c¢; = 1. The affine hull of two distinct points is often written in a special way. Suppose
y = c1vy + cavp with ey 4+ ¢ = 1. Write 7 in place of ¢, sothatcy =1 — ¢, = 1 —+¢.
Then the affine hull of {vy, v,} is the set

y=({0—=1t)vy+1tv,, withtinR (1)

This set of points includes v; (when t = 0) and v, (when t = 1). If v, = vy, then (1)
again describes just one point. Otherwise, (1) describes the /ine through v; and v,. To
see this, rewrite (1) in the form

y=vi+t(v;—v))=p+tu, withzinR

where p is v; and u is v, — v;. The set of all multiples of u is Span {u}, the line through
u and the origin. Adding p to each point on this line translates Span {u} into the line
through p parallel to the line through u and the origin. See Figure 1. (Compare this
figure with Figure 5 in Section 1.5.)

/zu
/
/

_— P 4l

u

FIGURE 1

Figure 2 uses the original points v, and v,, and displays aff {v,,v,} as the line
through v, and v,.

AY=V +t(v,=V))
/
aff{v,,v,) V2 z
i v

1 Z(VZ*VI)

Vo=V

FIGURE 2

Notice that while the point y in Figure 2 is an affine combination of v; and v;, the
point y — v; equals 7(v, — vy), which is a linear combination (in fact, a multiple) of
v, — v;. This relation between y and y — v; holds for any affine combination of points,
as the following theorem shows.

THEOREM 1 A point y in R” is an affine combination of vy, ..., v, in R” if and only if y — v;
is a linear combination of the translated points vo — vi,...,V, — Vj.
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PROOF If y — vy is a linear combination of v, — vy, ..., v, — vy, there exist weights
Ca,...,cp such that

y—vi=cx(va—=vy) + -+ cp(v, —Vy) ()

Then
y=0—c—-—cpvitaava+--+cpv, (3)

and the weights in this linear combination sum to 1. So y is an affine combination of
Vi,...,V,.Conversely, suppose

Yy=cC1Vi + vy + -+ Cpv, @)

where ¢y +---+ ¢, = 1. Since ¢; =1 —¢; — -+ —¢p, equation (4) may be written
as in (3), and this leads to (2), which shows that y — v; is a linear combination of
V2 —Vi,...,Vp —V]. |

In the statement of Theorem 1, the point v; could be replaced by any of the other
points in the list vy, ..., v,. Only the notation in the proof would change.

EXAMPLE 1 Letv, = |:;:|,V2 = [§:|,V3 = |:;:|,V4 = |:_§:|,andy= |:‘1|-:|

If possible, write y as an affine combination of vy, v,, v3, and v4.

SOLUTION Compute the translated points

1 0 -3 3
wone[i} w3} e[ ]

To find scalars ¢, ¢3, and ¢4 such that
(Vo —vi) +c3(v3—v)) +ca(va—v) =y—v )]
row reduce the augmented matrix having these points as columns:
1 0 -3 3 1 0 -3 3
3 1 0 -1 0O 1 9 —10
This shows that equation (5) is consistent, and the general solution is ¢; = 3c¢4 + 3,
c3 = —9c4 — 10, with ¢4 free. When ¢4 = 0,

y—vi=3(V2—vy)—10(vz —v{) + 0(v4 — vy)

and
y = 8v; 4+ 3v, — 10v;
As another example, take ¢4 = 1. Then ¢; = 6 and ¢3 = —19, so
Y= Vi =06(v2—vi) = 19(vz —vi) + 1(v4 — V1)
and
y = 13v; + 6v, — 19v3 + vy [ |

While the procedure in Example 1 works for arbitrary points vi, va,...,v, in R",
the question can be answered more directly if the chosen points v; are a basis for R”.
For example, let B = {by, ..., b,} be such a basis. Then any y in R” is a unique linear
combination of by, ..., b,. This combination is an affine combination of the b’s if and
only if the weights sum to 1. (These weights are just the B-coordinates of y, as in
Section 4 .4.)

SECOND REVISED PAGES
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4 0 5 2 1
EXAMPLE 2 Letb, = | 0 |,by=|4 |[,bs=|2|.p,=|0 |,andp, = | 2
3 2 4 0 2

The set B = {b;, by, b3} is a basis for R3. Determine whether the points p, and p, are
affine combinations of the points in B.

SOLUTION Find the B-coordinates of p; and p,. These two calculations can be com-
bined by row reducing the matrix [b; b, b3z p; Pp, ], with two augmented columns:

2

4 0 5 2 1 10 0-2 3
O4202~o10_1§
32 4 0 2 |
o 0o 1 2 -1

Read column 4 to build p,, and read column 5 to build p,:
py =—2b;—by+2b; and p, = 3b; + b, — 1bs

The sum of the weights in the linear combination for p, is —1, not 1, so p, is not an
affine combination of the b’s. However, p, is an affine combination of the b’s, because
the sum of the weights for p, is 1. [ |

A set S is affine if p, q € S implies that (1 — ¢)p + ¢q € S for each real number #.

Geometrically, a set is affine if whenever two points are in the set, the entire line
through these points is in the set. (If S contains only one point, p, then the line through
p and p is just a point, a “degenerate” line.) Algebraically, for a set S to be affine,
the definition requires that every affine combination of two points of S belong to S.
Remarkably, this is equivalent to requiring that S’ contain every affine combination of
an arbitrary number of points of .

A set S is affine if and only if every affine combination of points of S lies in S.
That is, S is affine if and only if S = aff S.

Remark: See the remark prior to Theorem 5 in Chapter 3 regarding mathematical indu-
ction.

PROOF Suppose that S is affine and use induction on the number m of points of S
occurring in an affine combination. When m is 1 or 2, an affine combination of m points
of S lies in S, by the definition of an affine set. Now, assume that every affine combina-
tion of k or fewer points of S yields a point in S, and consider a combination of k + 1
points. Take v; in S fori = 1,...,k+ 1,and lety = ¢;vy + -+ + ¢k Vi + Ckt1Vi+1,
where ¢; + -+ 4+ cx+1 = 1. Since the ¢;’s sum to 1, at least one of them must not be
equal to 1. By reindexing the v; and ¢;, if necessary, we may assume that ¢, +; # 1. Let
t=c +--+ck.Thent =1 —c¢r4; # 0,and

y =1 —ck41) (ct—lV1 +- ct—kvk) + Crr1Vit1 (6)
By the induction hypothesis, the pointz = (¢;/t)vy + --- + (cx/t) Vg is in S, since the
coefficients sum to 1. Thus (6) displays y as an affine combination of two points in S,
and so y € S. By the principle of induction, every affine combination of such points
lies in S. That is, aff S C S. But the reverse inclusion, S C aff S, always applies. Thus,
when S is affine, S = aff S. Conversely, if S = aff S, then affine combinations of two
(or more) points of S lie in S, so S is affine. |
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THEOREM 3

The next definition provides terminology for affine sets that emphasizes their close
connection with subspaces of R”.

A translate of aset S in R” by avectorpisthesetS + p={s+p:se S}>Aflat
in R” is a translate of a subspace of R”. Two flats are parallel if one is a translate of
the other. The dimension of a flat is the dimension of the corresponding parallel
subspace. The dimension of a set S, written as dim S, is the dimension of the
smallest flat containing S. A line in R” is a flat of dimension 1. A hyperplane in
R" is a flat of dimension n — 1.

InR3, the proper subspaces® consist of the origin 0, the set of all lines through 0, and
the set of all planes through 0. Thus the proper flats in R? are points (zero-dimensional),
lines (one-dimensional), and planes (two-dimensional), which may or may not pass
through the origin.

The next theorem shows that these geometric descriptions of lines and planes in R?
(as translates of subspaces) actually coincide with their earlier algebraic descriptions as
sets of all affine combinations of two or three points, respectively.

A nonempty set S is affine if and only if it is a flat.

Remark: Notice the key role that definitions play in this proof. For example, the first
part assumes that S is affine and seeks to show that S is a flat. By definition, a flat is a
translate of a subspace. By choosing p in S and defining W = S 4 (—p), the set S is
translated to the origin and S = W + p. It remains to show that W is a subspace, for
then S will be a translate of a subspace and hence a flat.

PROOF Suppose that S is affine. Let p be any fixed pointin S and let W = S + (—p),
so that S = W + p. To show that § is a flat, it suffices to show that W is a subspace of
R". Since p is in S, the zero vector is in W . To show that IV is closed under sums and
scalar multiples, it suffices to show that if u; and u, are elements of W, then u; + ru,
is in W for every real . Since u; and u, are in W, there exist s; and s, in .S such that
u; =s; —pandu, =s; — p. So, for each real 7,
u + 7wy = (s —p) +1(s2—p)
= —=0)s+1(s1+s2—p)—p

Lety = s; + s, — p. Then y is an affine combination of points in S. Since S is affine, y is
in S (by Theorem 2). Butthen (1 — #)s; + tyisalsoin S.Sou; + tuyisin—p+ S = W.
This shows that W is a subspace of R”. Thus S is a flat, because S = W + p.

Conversely, suppose S is a flat. That is, S = W + p for some p € R” and some
subspace W. To show that S is affine, it suffices to show that for any pair s; and s, of
points in S, the line through s; and s, lies in S'. By definition of W, there exist u; and
u, in W such thats; = u; 4+ p and s, = u, + p. So, for each real ¢,

(1—=t)s; +1s; = (1 —t)(u; +p) +t(ay +p)
=(—-0u +rtuy+p

Since W is a subspace, (1 —¢)u; +tu; € W and so (1 —¢)s; +ts, e W+p=S.
Thus S is affine. [ |

2If p = 0, then the translate is just S itself. See Figure 4 in Section 1.5.

3 A subset A of a set B is called a proper subset of B if A # B. The same condition applies to proper
subspaces and proper flats in R”: they are not equal to R”.
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Theorem 3 provides a geometric way to view the affine hull of a set: it is the flat that
consists of all the affine combinations of points in the set. For instance, Figure 3 shows
the points studied in Example 2. Although the set of all linear combinations of by, b,,
and bs is all of R3, the set of all affine combinations is only the plane through by, b,
and bs. Note that p, (from Example 2) is in the plane through by, b, and b3, while p,
is not in that plane. Also, see Exercise 14.

The next example takes a fresh look at a familiar set—the set of all solutions of a
system Ax = b.

EXAMPLE 3 Suppose that the solutions of an equation Ax = b are all of the form

2 4
X = x3u+ p,whereu= | -3 |andp = 0 |.Recall from Section 1.5 that this set
1 -3

is parallel to the solution set of Ax = 0, which consists of all points of the form x;u.
Find points v; and v, such that the solution set of Ax = b is aff{v, v,}.

SOLUTION The solution set is a line through p in the direction of u, as in Figure 1. Since
aff {vy, v,} is a line through v, and v,, identify two points on the line x = x3u + p. Two
simple choices appear when x3 = 0 and x3 = 1. That is, take vi = p and v, = u + p,
so that

2 4 6
Vo, =u+ P= -3 + 0 = -3
1 -3 -2
In this case, the solution set is described as the set of all affine combinations of the form
4 6
x = (1—x3) Of+x3| -3]. [ |
-3 -2

Earlier, Theorem 1 displayed an important connection between affine combinations
and linear combinations. The next theorem provides another view of affine combina-
tions, which for R? and R is closely connected to applications in computer graphics,
discussed in the next section (and in Section 2.7).

For v in R”, the standard homogeneous form of v is the point v = [Y} inR" 1,
A point y in R” is an affine combination of vi,...,v, in R" if and only if the
homogeneous form of y is in Span{Vi,...,V,}.In fact,y = c;vi + -+ + ¢, V,,
with¢| + .-+ ¢, = 1,ifand only if y = ¢;V; + -+ + ¢, V,,.

PROOF Apointyisinaff{vi,...,v,}if and only if there exist weights ¢y, ..., ¢, such
Y| _ Vi V2 Vp
[l=alt el ]eralY]

This happens if and only if y is in Span {V{, V,...,V,}. ]

3 1 1 4
EXAMPLE 4 lLetvi=|1|,vo=|2|,v3=|7 |,andp = | 3 |.Use Theo-
1 2 1 0

rem 4 to write p as an affine combination of vy, v, and vj, if possible.
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SOLUTION Row reduce the augmented matrix for the equation
X1V1 + X2V2 + x3V3 = P

To simplify the arithmetic, move the fourth row of 1’s to the top (equivalent to three
row interchanges). After this, the number of arithmetic operations here is basically the
same as the number needed for the method using Theorem 1.

1 1 1 1 I 1 1 1
[¥1 % ¥ P 31 1 4 0 -2 =2 1
ieve vaop 12 7 3 0 1 6 2
1 2 1 0 0 1 0 -1
1 0 0 15
o 1 0 -1
0 0 1 5
0 0 O 0
By Theorem 4, 1.5v; — v, + .5v3 = p. See Figure 4, which shows the plane that con-
tains vy, v,, v3, and p (together with points on the coordinate axes). [ |
X3

FIGURE 4

PRACTICE PROBLEM

Plot the points v; = |:(1):|,vz = [_éj|,V3 = [?j|,andp = [gi| on graph paper, and

explain why p must be an affine combination of vy, v,, and v3. Then find the affine
combination for p. [Hint: What is the dimension of aff {v;, v,, v3}?]

8.1 EXERCISES
In Exercises 1-4, write y as an affine combination of the other -3 0 4 17
points listed, if possible. Jovi=| L]va=| 4],s=|-2]y=]| 1

R e o L
S 1 O P R S H S A el L S ]




1 2
InExercises Sand 6,1letb; = | 1 |,b, = 0],bs=|-5],
-2 1

and S = {b;, by, bs}. Note that S is an orthogonal basis for R>.
Write each of the given points as an affine combination of the
points in the set S, if possible. [Hint: Use Theorem 5 in Section
6.2 instead of row reduction to find the weights.]

5.

6.

10.

3 6 0
a. p,=1|8 b. p,=| -3 c. p3;=| —1
4 3 -5
0 1.5 5
a. p,=|-19 b.p,=|—-13] c. p3=| —4
-5 -5 0
Let
1 r 2 -1
0 —1 2
vV = 3| vV, = ol V3 = 1
L 0 | 4 L 1
r 5 -9 4
-3 10 2
pl = 5 ’ p2 = 9 ’ p3 = 8 ’
| 3 | —13 L5

and S = {v|,v,,v3}. It can be shown that S is linearly
independent.

a. Isp, in Span S?Is p, in aff §?
b. Isp, in Span S?Is p, in aff S?
c. Isp;in SpanS?Is p; in aff §?

Repeat Exercise 7 when

1 2 3
0 1 0
Vi = 3| V2 = 6 | V3 = 121
L —2 | L =5 | 6 |
47 =57 1
|-t | 3 4ol ©
P = 15 |’ P> = -8 |’ an P; = -6
L —7 | L 6| | —8

Suppose that the solutions of an equation Ax = b are all of

0
Find points v, and v, such that the solution set of Ax = b is
aff {Vl B Vz}.

Suppose that the solutions of an equation Ax = b are all of

the form x = x;u + p, where u = [_;] and p = |:—3i|.

5 1
the form x = x;u + p, where u = 1 |andp=| -3
-2 4

Find points v; and v, such that the solution set of Ax = b is
aff {Vl ) Vz} .

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

12.

13.

14.

15.

16.

17.

18.

19.

20.
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o

The set of all affine combinations of points in a set S is
called the affine hull of S.

b. If {by,...,bs} is alinearly independent subset of R" and
if p is a linear combination of by, ..., by, then p is an
affine combination of by, ..., by.

c. The affine hull of two distinct points is called a line.

d. A flatis a subspace.

o

A plane in R? is a hyperplane.

a. If § = {x}, then aff S is the empty set.

b. A setis affine if and only if it contains its affine hull.
c. A flat of dimension 1 is called a line.

d. A flat of dimension 2 is called a hyperplane.

e. A flat through the origin is a subspace.

Suppose {vi,V,,v3} is a basis for R3. Show that
Span {v, — vi,v3 — v,} is a plane in R3. [Hint: What can
you say about u and v when Span {u, v} is a plane?]

Show that if {v;, v, v3} is a basis for R?, then aff {v;, v,, v3}
is the plane through vy, v,, and v;.

Let A be an m x n matrix and, given b in R, show that the
set S of all solutions of Ax = b is an affine subset of R”.

Letv € R"andletk € R.ProvethatS = {x € R": x-v = k}
is an affine subset of R”.

Choose a set S of three points such that aff S is the plane in
R3 whose equation is x3 = 5. Justify your work.

Choose a set S of four distinct points in R3 such that aff S is
the plane 2x; + x, — 3x3 = 12. Justify your work.

Let S be an affine subset of R”, suppose f: R" — R™ is a
linear transformation, and let f(S) denote the set of images
{f(x) :x € S}.Prove that f(S) is an affine subset of R”.

Let f: R" — R™ be a linear transformation, let 7" be an
affine subset of R, and let S = {x € R"” : f(x) € T'}. Show
that S is an affine subset of R”.

In Exercises 21-26, prove the given statement about subsets A
and B of R", or provide the required example in R?. A proof
for an exercise may use results from earlier exercises (as well as
theorems already available in the text).

21.
22.
23.

24.

25.
26.

If A C B and B is affine, then aff A C B.
If A C B,then aff A C aff B.

[(aff A) U (aff B)] C aff (AU B). [Hint: To
DUE C F,showthat D C Fand E C F.]
Find an example in R? to show that equality need not hold in
the statement of Exercise 23. [Hint: Consider sets A and B,
each of which contains only one or two points.]

aff (A N B) C (aff A N aff B).

Find an example in R? to show that equality need not hold in
the statement of Exercise 25.

show that
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X

SOLUTION TO PRACTICE PROBLEM

Since the points v;, v,, and v3 are not collinear (that is, not on a single line),
aff {v;,v,, v3} cannot be one-dimensional. Thus, aff {v;, v, v3} must equal R?. To find
the actual weights used to express p as an affine combination of vy, v,, and vj, first

Compute
[ T2 ; I3
V) — V) = 2 ) V3 — V] = 1 ) an p_Vl— 3

To write p — v; as a linear combination of v, — vy and v3 — vy, row reduce the matrix
having these points as columns:

-2 2 3 1 0
2 1 3 0 1
p=(1-3-2)vi+3va+2vi=—-3vi+1v, +2v;

o NI—

Thusp —v; = %(vz —Vy) + 2(v3 — v1), which shows that

This expresses p as an affine combination of vy, v,, and v3, because the coefficients sum
tol.
Alternatively, use the method of Example 4 and row reduce:

N M= W

v v v 1 1 1 1 I 0 0

1 2 3 . N
[1 o 1}~ 1 é 3 431 0 1 0
0 0 1

This shows that p = —%Vl + %vz + 2v3.

8.2  AFFINE INDEPENDENCE

This section continues to explore the relation between linear concepts and affine con-
cepts. Consider first a set of three vectors in R?, say S = {v|,v,, v3}. If S is linearly
dependent, then one of the vectors is a linear combination of the other two vectors. What
happens when one of the vectors is an affine combination of the others? For instance,
suppose that

v3; = (1 —t)vy +tv,, forsometinR.

Then
1=tV +tvy—v3 =0.

This is a linear dependence relation because not all the weights are zero. But more is
true—the weights in the dependence relation sum to O:

Q-+t + (-1 =0.
This is the additional property needed to define affine dependence.

An indexed set of points {vi,...,v,} in R" is affinely dependent if there exist
real numbers cy, ..., ¢,, not all zero, such that
ci+--+c, =0 and cvi+---+cpv, =0 (1)

Otherwise, the set is affinely independent.
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An affine combination is a special type of linear combination, and affine depen-
dence is a restricted type of linear dependence. Thus, each affinely dependent set is
automatically linearly dependent.

A set {v|} of only one point (even the zero vector) must be affinely independent
because the required properties of the coefficients ¢; cannot be satisfied when there is
only one coefficient. For {v,}, the first equation in (1) is just ¢; = 0, and yet at least one
(the only one) coefficient must be nonzero.

Exercise 13 asks you to show that an indexed set {vy, v,} is affinely dependent if
and only if vi = v,. The following theorem handles the general case and shows how
the concept of affine dependence is analogous to that of linear dependence. Parts (c) and
(d) give useful methods for determining whether a set is affinely dependent. Recall from
Section 8.1 that if v is in R”, then the vector v in R"*! denotes the homogeneous form
of v.

Given an indexed set S = {vi,...,v,} in R”, with p > 2, the following state-
ments are logically equivalent. That is, either they are all true statements or they
are all false.

a. § is affinely dependent.

b. One of the points in S is an affine combination of the other points in S.

c. Theset {vo —vy,...,v, — v} in R” is linearly dependent.

d. The set {¥i,...,V,} of homogeneous forms in R"*! is linearly dependent.

PROOF Suppose statement (a) is true, and let ¢y, ..., ¢, satisfy (1). By renaming the
points if necessary, one may assume that ¢; # 0 and divide both equations in (1) by ¢y,
sothat 1 + (c2/c1) + -+ + (cp/c1) = 0 and

vi = (=c2/ci)Va+ -+ (=cp/c1)Vp 2

Note that the coefficients on the right side of (2) sum to 1. Thus (a) implies (b). Now,
suppose that (b) is true. By renaming the points if necessary, one may assume that
Vi = CpVy + -+ ¢pVp, where ¢ + - + ¢, = 1. Then

(Cz+"'+Cp)V1=CzV2+"~+Cpr 3
and
co(Va—v) + ot cp(vy—v) =0 4@
Not all of ¢, ..., ¢, can be zero because they sum to 1. So (b) implies (c).
Next, if (c) is true, then there exist weights ¢;, ..., c,, not all zero, such that (4)

holds. Rewrite (4) as (3) and set ¢c; = —(¢2 + -+ +¢,). Thenc¢; +--- + ¢, = 0. Thus
(3) shows that (1) is true. So (c) implies (a), which proves that (a), (b), and (c) are
logically equivalent. Finally, (d) is equivalent to (a) because the two equations in (1)
are equivalent to the following equation involving the homogeneous forms of the points

e Cl[vll}+...+cp[vf}=[g} .

In statement (c) of Theorem 5, v; could be replaced by any of the other points in
the list vy, ..., v,. Only the notation in the proof would change. So, to test whether a
set is affinely dependent, subtract one point in the set from the other points, and check
whether the translated set of p — 1 points is linearly dependent.

SECOND REVISED PAGES
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EXAMPLE 1 The affine hull of two distinct points p and q is a line. If a third point
r is on the line, then {p, q, r} is an affinely dependent set. If a point s is not on the line
through p and q, then these three points are not collinear and {p, q,s} is an affinely
independent set. See Figure 1. [ |

aff{p. q}
q
p o
r S

FIGURE 1 {p, q,r} is affinely dependent.

1 2 0
EXAMPLE 2 Letvi=|3|,voa=| 7 |,va=| 4|, and S = {v, vy, v3}.
7 6.5 7

Determine whether S is affinely independent.
1 [ —1

SOLUTION Compute v, — v = 4 Jlandvz—v, = 1 |.These two points are
-5 0

not multiples and hence form a linearly independent set, S’ .So all statements in Theorem

5 are false, and S is affinely independent. Figure 2 shows S and the translated set S’.

Notice that Span S’ is a plane through the origin and aff S is a parallel plane through vy,

V2, and v3. (Only a portion of each plane is shown here, of course.) [ ]

aff{vl,vz, v3}

Span{v, = v, v; — v}

FIGURE 2 An affinely independent set

{V1,V2,V3}.
1 2 0 0
EXAMPLE 3 Letvi;=|3|,vo=| 7 |,v3=| 4 |,andvy = | 14 |,andlet
7 6.5 7 6
S = {vy,...,v4}.Is § affinely dependent?
1 —1 —1
SOLUTION Compute v, —v| = 4 1,v3—v = 1 |,andvy—v; = | 11 |,
-5 0 -1

and row reduce the matrix:
1 -1 —1 1 —1 -1 1 -1 —1
4 1 11 |~ |0 5 I5({~]0 5 15
-5 0 -1 0o -5 —-1.5 o 0 0

Recall from Section 4.6 (or Section 2.8) that the columns are linearly dependent be-
cause not every column is a pivot column; so v, — vy, v3 — vy, and v4 — v; are linearly
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dependent. By statement (c) in Theorem 5, {v{, v,, v3, v4} is affinely dependent. This
dependence can also be established using (d) in Theorem 5 instead of (c). [ |

The calculations in Example 3 show that v4 — v, is a linear combination of v, — v;
and v3 — v, which means that v4 — vy is in Span {v, — v, v — v;}. By Theorem 1 in
Section 8.1, v4 is in aff {vy, v5, v3}. In fact, complete row reduction of the matrix in
Example 3 would show that

Vi — vy =2(v2 —v) +3(vs —vy) (5)
vy = —4v| + 2v, + 3v3 (6)
See Figure 3.

FIGURE 3 v, is in the plane aff {v|, v,, v3}.

Figure 3 shows grids on both Span{v, — v, v; — v,} and aff {v,, v5, v3}. The grid
on aff {vy, v5, v3} is based on (5). Another “coordinate system” can be based on (6), in
which the coefficients —4, 2, and 3 are called affine or barycentric coordinates of v.

Barycentric Coordinates

The definition of barycentric coordinates depends on the following affine version of the
Unique Representation Theorem in Section 4.4. See Exercise 17 in this section for the
proof.

Let S = {vy,..., v} be an affinely independent set in R”. Then each p in aff S
has a unique representation as an affine combination of vy, ..., vi. That is, for
each p there exists a unique set of scalars cy, . .., ¢x such that

p=cvi+---+cvy and c;+---+cp =1 7

Let S = {vy,...,vi} be an affinely independent set. Then for each point p in
aff S, the coefficients cy, ..., cx in the unique representation (7) of p are called
the barycentric (or, sometimes, affine) coordinates of p.

Observe that (7) is equivalent to the single equation

[ll’]=cl[vll}+---+6k[vf‘} ®)

involving the homogeneous forms of the points. Row reduction of the augmented matrix
[‘71 T 7 f)] for (8) produces the barycentric coordinates of p.
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EXAMPLE 4 leta = |:;i|,b = [3:|c = [g},andp = |:§:|.Findthebarycen-

tric coordinates of p determined by the affinely independent set {a, b, c}.

SOLUTION Row reduce the augmented matrix of points in homogeneous form, moving
the last row of ones to the top to simplify the arithmetic:

3 1 3 9 5 1 1 1 1
[a b ¢ p]=|7 0 3 3|~|1 3 9 5
1 1 1 1 |7 0 3 3
B 1
1 0 O I
1
5
00 1 5
The coordinates are }1, % and 1—52 sop = ia + %b + %c. [ |

Barycentric coordinates have both physical and geometric interpretations. They
were originally defined by A. F. Moebius in 1827 for a point p inside a triangular
region with vertices a, b, and ¢. He wrote that the barycentric coordinates of p are
three nonnegative numbers m,, my, and m, such that p is the center of mass of a system
consisting of the triangle (with no mass) and masses m, , my,, and m, at the corresponding
vertices. The masses are uniquely determined by requiring that their sum be 1. This view
is still useful in physics today.!

Figure 4 gives a geometric interpretation to the barycentric coordinates in Example
4, showing the triangle Aabe and three small triangles Apbe, Aape, and Aabp. The
areas of the small triangles are proportional to the barycentric coordinates of p. In fact,

1

area(Apbc) = 1 - area(Aabc)
1

area(Aapc) = 3 - area(Aabc) C)
5

area(Aabp) = 7 - area(Aabc)

area = s - area(Aabc)

area = ¢ - area(Aabc)

N
area = r - area(Aabc)

b

FIGURE 4 p = ra + sb + rc. Here,r = {,

1,5
s=11=3.

The formulas in Figure 4 are verified in Exercises 21-23. Analogous equalities for
volumes of tetrahedrons hold for the case when p is a point inside a tetrahedron in R,
with vertices a, b, ¢, and d.

! See Exercise 29 in Section 1.3. In astronomy, however, “barycentric coordinates” usually refer to ordinary
R3 coordinates of points in what is now called the International Celestial Reference System, a Cartesian
coordinate system for outer space, with the origin at the center of mass (the barycenter) of the solar system.
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When a point is not inside the triangle (or tetrahedron), some of the barycentric
coordinates will be negative. The case of a triangle is illustrated in Figure 5, for vertices
a, b, ¢, and coordinate values r, s, t, as above. The points on the line through b and ¢, for
instance, have r = 0 because they are affine combinations of only b and ¢. The parallel
line through a identifies points with r = 1.

FIGURE 5 Barycentric coordinates
for points in aff {a, b, c}.

Barycentric Coordinates in Computer Graphics

When working with geometric objects in a computer graphics program, a designer may
use a “wire-frame” approximation to an object at certain key points in the process
of creating a realistic final image.?> For instance, if the surface of part of an object
consists of small flat triangular surfaces, then a graphics program can easily add color,
lighting, and shading to each small surface when that information is known only at the
vertices. Barycentric coordinates provide the tool for smoothly interpolating the vertex
information over the interior of a triangle. The interpolation at a point is simply the
linear combination of the vertex values using the barycentric coordinates as weights.

Colors on a computer screen are often described by RGB coordinates. A triple
(r, g, b) indicates the amount of each color—red, green, and blue — with the parameters
varying from O to 1. For example, pure red is (1,0, 0), white is (1, 1, 1), and black is
(0,0,0).

3 4 1 3
EXAMPLE 5 Letvi=|1]|,v2=|3|,v3=|5|,andp=| 3 |.Thecol-
5 4 1 3.5

ors at the vertices vy, v,,and v; of a triangle are magenta (1, 0, 1), light magenta (1, .4, 1),
and purple (.6, 0, 1), respectively. Find the interpolated color at p. See Figure 6.

V2

FIGURE 6 Interpolated colors.

2 The Introductory Example for Chapter 2 shows a wire-frame model of a Boeing 777 airplane, used to
visualize the flow of air over the surface of the plane.
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SOLUTION First, find the barycentric coordinates of p. Here is the calculation using
homogeneous forms of the points, with the first step moving row 4 to row 1:

1 1 1 1 I 0 0 .25
[f’l SRS f)] N 3 4 1 3 N 0O 1 0 .50
1 3 5 3 o o0 1 .25
5 4 1 35 0 0 O 0

So p = .25v| + .5v; + .25v;3. Use the barycentric coordinates of p to make a linear
combination of the color data. The RGB values for p are

1 1 .6 9| red
2510 [ +.50] 4 [+.25] Of=|.2] green [ |
1 1 1 1 | blue

One of the last steps in preparing a graphics scene for display on a computer screen
is to remove “hidden surfaces” that should not be visible on the screen. Imagine the
viewing screen as consisting of, say, a million pixels, and consider a ray or “line of sight”
from the viewer’s eye through a pixel and into the collection of objects that make up the
3D display. The color and other information displayed in the pixel on the screen should
come from the object that the ray first intersects. See Figure 7. When the objects in
the graphics scene are approximated by wire frames with triangular patches, the hidden
surface problem can be solved using barycentric coordinates.

FIGURE 7 A ray from the eye through the screen to the
nearest object.

The mathematics for finding the ray-triangle intersections can also be used to per-
form extremely realistic shading of objects. Currently, this ray-tracing method is too
slow for real-time rendering, but recent advances in hardware implementation may
change that in the future.?

EXAMPLE 6 Let

1 8 5 0 i
vV = 1 , V)= 1 , V3= 11 , a= 0 s b= 4 s
—6 —4 -2 10 -3

and x(t) = a + tb for ¢ > 0. Find the point where the ray x(¢) intersects the plane that
contains the triangle with vertices vy, v,, and v3. Is this point inside the triangle?

3 See Joshua Fender and Jonathan Rose, “A High-Speed Ray Tracing Engine Built on a Field-Programmable
System,” in Proc. Int. Conf on Field-Programmable Technology, IEEE (2003). (A single processor can
calculate 600 million ray-triangle intersections per second.)
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SOLUTION The plane is aff {v;, v,, v3}. A typical point in this plane may be written
as (1 — ¢; — ¢3)vy + 22 + ¢33 for some ¢, and c¢3. (The weights in this combination
sum to 1.) The ray x(¢) intersects the plane when c;, c3, and ¢ satisfy

(I1—co—c3)vi+cava+c3v3 =a+tb

Rearrange this as ¢;(v, — v1) + ¢3(v3 — vi) + £ (=b) = a — v;. In matrix form,

(&)
[Vz—Vl V3 — V] —b] Cc3 =a-—YVv
t
For the specific points given here,
7 4 —1
V) —V) = 0 s V3 — V| = 10 s a—vy, = —1
2 4 16

Row reduction of the augmented matrix above produces

7 4 =7 -1 1 0 0
0o 10 -4 —-1|~]0 1 0
2 4 3 16 0 0 1

U — W

Thus ¢; = .3,¢3 = .1,and t = 5. Therefore, the intersection point is

0 7 3.5

x(5)=a+5b=| 0 |+5 4|=]| 20

10 -3 -5.0

Also,
X(S) = (1 -3- ~1)V1 + 3vy, + .1vs

8 5 3.5
=.6 1|+3 I +.1] 11| = 2.0
—6 —4 -2 5.0

The intersection point is inside the triangle because the barycentric weights for x(5) are
all positive. u

PRACTICE PROBLEMS

1. Describe a fast way to determine when three points are collinear.

2. The points v| = |:‘1'.],V2 = |:(1)i|,V3 = [i},and V4 = [;i| form an affinely de-

pendent set. Find weights ¢y, ..., c4 that produce an affine dependence relation
Vi + -+ c4vy = 0, where ¢; + -+ + ¢4 = 0 and not all ¢; are zero. [Hint: See
the end of the proof of Theorem 5.]

SECOND REVISED PAGES
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8.2 EXERC

ISES

In Exercises 1-6, determine if the set of points is affinely depen-
dent. (See Practice Problem 2.) If so, construct an affine depen-
dence relation for the points.

T 3770727 27757 -3
A A S A P
r 17 7-—27T 2 0
3. =4l =11],] 15
-1 ] | 8 11 -9
277 o071 1 -2
4. 50, 3. =21|.] 7
L 3] L 7] -6 -3
F 177 To0 -1 0
5 ol,lt1],] 51, 5
2] |t 1 -3
M1 0 2 3
6. |31, -11].15],]5
|1 -2 2 0

In Exercises 7 and 8, find the barycentric coordinates of p with
respect to the affinely independent set of points that precedes it.

1 2 1 5
~1 1 2| | 4
2ol | =2 |'PT| =2
1 L] [ o] 2
07 17 17 M1
1 1 al |
2 lop]-6|[PT| -4
1] l2] [ 5] 0]

In Exercises 9 and 10, mark each statement True or False. Justify
each answer.

9. a.

10. a.

Ifvi,...,v,arein R" and if the set {v) — Vo, V3 — V5, ...,
V, — Vo) is linearly dependent, then {v,...,v,} is
affinely dependent. (Read this carefully.)

. If vi,...,v, are in R” and if the set of homogeneous
forms {¥,,...,¥,} in R"*! is linearly independent, then
{Vi,...,v,} is affinely dependent.

A finite set of points {vy, ..., v} is affinely dependent if
there exist real numbers ¢y, ..., ¢, not all zero, such that
ci+--+c=1landc;vi + -+ vy = 0.

If S = {vy,...,v,} is an affinely independent set in R”
and if p in R” has a negative barycentric coordinate
determined by S, then p is not in aff S.

If vi,V,,vs.a, and b are in R? and if a ray a + tb for
t > 0 intersects the triangle with vertices vy, v, and vs,
then the barycentric coordinates of the intersection point
are all nonnegative.

If {vy,...,v,} is an affinely dependent set in R", then the
set {Vy,...,¥,} in R"T! of homogeneous forms may be
linearly independent.

11.

12.

13.

14.

15.

b. If v;, v,, v3, and v, are in R?® and if the set
{Vy —vi,v3 — Vv, vy — v} is linearly independent, then
{V1,...,v4} is affinely independent.

c. Given S ={by,...,bs} in R", each p in aff S has
a unique representation as an affine combination of
by,...,b.

d. When color information is specified at each vertex vy, v,
v3 of a triangle in R3, then the color may be interpolated
at a point p in aff {v;, v,, v3} using the barycentric coor-
dinates of p.

e. If T is a triangle in R? and if a point p is on an edge of
the triangle, then the barycentric coordinates of p (for this
triangle) are not all positive.

Explain why any set of five or more points in R? must be
affinely dependent.

Show thataset {v,,...,v,} in R" is affinely dependent when
p=>n+2.
Use only the definition of affine dependence to show that an

indexed set {v;, v,} in R” is affinely dependent if and only if
Vi = V).

The conditions for affine dependence are stronger than those
for linear dependence, so an affinely dependent set is auto-
matically linearly dependent. Also, a linearly independent set
cannot be affinely dependent and therefore must be affinely
independent. Construct two linearly dependent indexed sets
S, and S, in R? such that S; is affinely dependent and S,
is affinely independent. In each case, the set should contain
either one, two, or three nonzero points.

—1 0 2
2}, vy = [4], V3=|:O], and let S =
{vi.va, v3}.

a. Show that the set S is affinely independent.

o =2
[i)em [ me=]

c. Let T be the triangle with vertices vy, v,, and v3. When
the sides of T are extended, the lines divide R? into seven
regions. See Figure 8. Note the signs of the barycentric
coordinates of the points in each region. For example, p;
is inside the triangle 7" and all its barycentric coordinates
are positive. Point p, has coordinates (—, +, +). Its third
coordinate is positive because p, is on the v; side of the
line through v; and v,. Its first coordinate is negative
because p, is opposite the v; side of the line through v,
and vs. Point p, is on the v,v; edge of 7. Its coordinates
are (0, 4+, +). Without calculating the actual values, de-
termine the signs of the barycentric coordinates of points
Pe. P7, and pg as shown in Figure 8.

Let v, :[

b. Find the barycentric coordinates

1
P, = |:2i|’P3:

with respect to .
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16.

17.

18.

19.

20.

FIGURE 8

Let

S H S

1 6
P = [2],p7 = [4},and5 = {v1. V2, V3}.
a. Show that the set S is affinely independent.

b. Find the barycentric coordinates of p,, p,, and p; with
respect to S.

c. On graph paper, sketch the triangle 7" with vertices vy,
vy, and vs, extend the sides as in Figure 8, and plot the
points p,, Ps, P, and p,. Without calculating the actual
values, determine the signs of the barycentric coordinates
of points p,, ps, Pg. and p,.

Prove Theorem 6 for an affinely independent set
S ={vi,..., vt} in R". [Hint: One method is to mimic the
proof of Theorem 7 in Section 4.4.]

Let T be a tetrahedron in “standard” position, with three
edges along the three positive coordinate axes in R3,
and suppose the vertices are ae;, be,, ce;, and 0, where
[e; e, e;] = I;.Find formulas for the barycentric coor-
dinates of an arbitrary point p in R?.

Let {p,,p,.P;} be an affinely dependent set of points in R”
and let f: R” — R™ be a linear transformation. Show that

(1), f(p2), f(p)} is affinely dependent in R

Suppose that {p,, p,, 5} is an affinely independent set in R”
and q is an arbitrary point in R”. Show that the translated set
{p; +4q,p, + q,p; + q} is also affinely independent.
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In Exercises 21-24, a, b, and ¢ are noncollinear points in R? and
p is any other point in R?. Let Aabe denote the closed triangular
region determined by a, b, and ¢, and let Apbe be the region
determined by p, b, and ¢. For convenience, assume that a, b, and
¢ are arranged so that det[a b €] is positive, where a, b, and
¢ are the standard homogeneous forms for the points.

21.

22.

23.

24.

25.

26.

Show that the area of Aabcisdet[a b &]/2.[Hint: Con-
sult Sections 3.2 and 3.3, including the Exercises.]

Let p be a point on the line through a and b. Show that
detfa b p]=0.

Let p be any point in the interior of Aabe, with barycentric
coordinates (r, s, 1), so that

Use Exercise 21 and a fact about determinants (Chapter 3) to
show that

r = (area of Apbc)/(area of Aabc)
s = (area of Aapc)/(area of Aabc)
t = (area of Aabp)/(area of Aabc)

Take q on the line segment from b to ¢ and consider the line
through q and a, which may be writtenasp = (1 — x)q + xa
for all real x. Show that, for each x, det[p b ¢&]=
x-det[a b ¢&].From this and earlier work, conclude that
the parameter x is the first barycentric coordinate of p. How-
ever, by construction, the parameter x also determines the
relative distance between p and ¢ along the segment from
q to a. (When x = 1, p = a.) When this fact is applied to
Example 5, it shows that the colors at vertex a and the point g
are smoothly interpolated as p moves along the line between
aand q.

1 7 3 0
Let v, = 3|,v, = 3, v3= 91(,a=1]0/|,
—6 =5 -2 9
1.4
b= 1.5 |, and x(¢) = a 4 tb for ¢ > 0. Find the point
-3.1

where the ray x(¢) intersects the plane that contains the
triangle with vertices vy, v,, and vs. Is this point inside the
triangle?

1 8
Repeat Exercise 25 with v, = 20, vo= 2,
—4 -5
3 0 .9
vi=| 10 [,a=| 0 |,andb = 2.0
-2 8 -3.7
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SOLUTIONS TO PRACTICE PROBLEMS

1. From Example 1, the problem is to determine if the points are affinely dependent.
Use the method of Example 2 and subtract one point from the other two. If one of
these two new points is a multiple of the other, the original three points lie on a line.

2. The proof of Theorem 5 essentially points out that an affine dependence relation
among points corresponds to a linear dependence relation among the homogeneous
forms of the points, using the same weights. So, row reduce:

4 1 5 1 1 1 1
[\71 Vo V3 54] =1 0 4 2|(~14 1 5
| 1 1 1 1 1 0 4 2
1 0 0 —1
~10 1 0 125
L0 0 1 75
View this matrix as the coefficient matrix for Ax = 0 with four variables. Then x4
is free, x; = x4, x, = —1.25x4, and x3 = —.75x4. One solution is x; = x4 = 4,
X, = —5, and x3 = —3. A linear dependence among the homogeneous forms is

4V; — 5V, — 3V3 + 4V, = 0.So 4v; — 5v, — 3v3 + 4vy = 0.

Another solution method is to translate the problem to the origin by subtracting
v, from the other points, find a linear dependence relation among the translated
points, and then rearrange the terms. The amount of arithmetic involved is about
the same as in the approach shown above.

8.3  CONVEX COMBINATIONS

Section 8.1 considered special linear combinations of the form
civi+ceva+ o+ oevi,  whereep +o 4o =1

This section further restricts the weights to be nonnegative.

A convex combination of points vi,Vv,, ..., Vv, in R” is a linear combination of
the form
C1Vy + CVp + -0+ i Vi

such that ¢c; + ¢y +---+ ¢ =1 and ¢; > 0 for all i. The set of all convex
combinations of points in a set S is called the convex hull of S, denoted by conv S .

The convex hull of a single point v, is just the set {v;}, the same as the affine hull.
In other cases, the convex hull is properly contained in the affine hull. Recall that the
affine hull of distinct points v and v is the line

y=(—1t)v; +1tv,, withzinR

Because the weights in a convex combination are nonnegative, the points in conv {vy, v,}
may be written as
y=({—=¢t)v)+1tvy, with0 <7 <1

which is the line segment between v; and v,, hereafter denoted by v;v;.

If a set S is affinely independent and if p € aff S, then p € conv S if and only if
the barycentric coordinates of p are nonnegative. Example 1 shows a special situation
in which S is much more than just affinely independent.
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EXAMPLE 1 Let

3 —6 3 0 —10
0 3 6 3 5

V) = 610 V2= 310 V3= 1o | P = 3| P = 11 I
-3 0 3 0 —4

and S = {vy, vy, v3}. Note that S is an orthogonal set. Determine whether p, is in
Span S, aff S, and conv S. Then do the same for p,.

SOLUTION If p, is at least a linear combination of the points in S, then the weights are
easily found, because S is an orthogonal set. Let W be the subspace spanned by S. A cal-
culation as in Section 6.3 shows that the orthogonal projection of p; onto W is p, itself:

. Pi-Vi P2 Pi°V3
projy Py = v+ vy + V3
ViV V2:V2 V3+V3

_ 18 18 18
T o T Ty

3 —6 3 0

1| oo 1| 3]l |3

=30 6|73 3|T3|0|T|3|T™
3 0 3 0

This shows that p, is in Span S. Also, since the coefficients sum to 1, p, is in aff S. In
fact, p, is in conv S, because the coefficients are also nonnegative.

For p,, a similar calculation shows that projy, p, # p,. Since projy, p, is the closest
point in Span S to p,, the point p, is not in Span S. In particular, p, cannot be in aff S
orconv S. [ |

Recall that a set S is affine if it contains all lines determined by pairs of points in S'.
When attention is restricted to convex combinations, the appropriate condition involves
line segments rather than lines.

A set S is convex if for each p, q € S, the line segment pq is contained in S.

Intuitively, a set S is convex if every two points in the set can “see” each other
without the line of sight leaving the set. Figure 1 illustrates this idea.

‘\ /

Convex Convex Not convex

FIGURE 1

The next result is analogous to Theorem 2 for affine sets.

A set S is convex if and only if every convex combination of points of S lies in
S. Thatis, S is convex if and only if S = conv S.

PROOF The argument is similar to the proof of Theorem 2. The only difference is
in the induction step. When taking a convex combination of k 4 1 points, consider
y=cvi+ -+ ckVk + Crk+1Vk+1, Where ¢ + -+ ck+1 =1 and 0 <¢; <1 for
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THEOREM 9

all i. If c¢y+1 = 1, then y = v4;, which belongs to S, and there is nothing further to
prove. If ¢4+ < 1,lett =cy +---+cx.Thent =1 —cx4; > 0 and

C1 Ck
y=(1- Ck+1)<?V1 + -+ Tvk> + Ck+1Vk+1 (D

By the induction hypothesis, the point z = (¢;/t)vy + --- + (cx/t) vk is in S, since the
nonnegative coefficients sum to 1. Thus equation (1) displays y as a convex combination
of two points in S. By the principle of induction, every convex combination of such
points lies in S. [ |

Theorem 9 below provides a more geometric characterization of the convex hull
of a set. It requires a preliminary result on intersections of sets. Recall from Section
4.1 (Exercise 32) that the intersection of two subspaces is itself a subspace. In fact, the
intersection of any collection of subspaces is itself a subspace. A similar result holds for
affine sets and convex sets.

Let {Sy : @ € A} be any collection of convex sets. Then MNye 4 Sy is convex. If
{Tg : B € B} is any collection of affine sets, then Ngep Ty is affine.

PROOF If p and q are in NS, then p and q are in each S, . Since each S, is convex,
the line segment between p and q is in S, for all & and hence that segment is contained
in NS, . The proof of the affine case is similar. [ |

For any set S, the convex hull of § is the intersection of all the convex sets that
contain S'.

PROOF Let T denote the intersection of all the convex sets containing .S'. Since conv S
is a convex set containing S, it follows that 7 C conv S. On the other hand, let C be
any convex set containing S. Then C contains every convex combination of points of
C (Theorem 7), and hence also contains every convex combination of points of the
subset S. That is, conv S C C. Since this is true for every convex set C containing S,
it is also true for the intersection of them all. That is,conv S C T. [ |

Theorem 9 shows that conv S is in a natural sense the “smallest” convex set con-
taining S. For example, consider a set S that lies inside some large rectangle in R?, and
imagine stretching a rubber band around the outside of S. As the rubber band contracts
around S, it outlines the boundary of the convex hull of S. Or to use another analogy,
the convex hull of S fills in all the holes in the inside of S and fills our all the dents in
the boundary of S.

EXAMPLE 2
a. The convex hulls of sets S and 7" in R? are shown below.

]

S conv § T conv T
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b. Let S be the set consisting of the standard basis for R3S = {e1, e, e3}. Thenconv S
is a triangular surface in R3, with vertices e;, e,, and e5. See Figure 2. |

EXAMPLE 3 LetS = { [;i| :x>0andy = xz} . Show that the convex hull of

S is the union of the origin and % [;i| :x>0and y > xz} . See Figure 3.

SOLUTION Every point in conv S must lie on a line segment that connects two points
of S. The dashed line in Figure 3 indicates that, except for the origin, the positive y-
axis is not in conv S, because the origin is the only point of S on the y-axis. It may
seem reasonable that Figure 3 does show conv .S, but how can you be sure that the point
(10_2, 104) , for example, is on a line segment from the origin to a point on the curve in
S?

Consider any point p in the shaded region of Figure 3, say

p= |:Zi| witha > 0 and b > a?

The line through 0 and p has the equation y = (b/a)t for ¢ real. That line intersects
S where ¢ satisfies (b/a)t = t2, that is, when ¢ = b/a. Thus, p is on the line segment

b/a
from 0 to [bz/az

i|,which shows that Figure 3 is correct. |

The following theorem is basic in the study of convex sets. It was first proved by
Constantin Caratheodory in 1907. If p is in the convex hull of §, then, by definition, p
must be a convex combination of points of S. But the definition makes no stipulation
as to how many points of S are required to make the combination. Caratheodory’s
remarkable theorem says that in an n-dimensional space, the number of points of S
in the convex combination never has to be more thann + 1.

(Caratheodory) If S is a nonempty subset of R”, then every point in conv S can
be expressed as a convex combination of n + 1 or fewer points of S'.

PROOF Given p in conv S, one may write p = ¢;v] + --- + cxVx, where v; € S,
c1+-++ck=1,and ¢; >0, for some k and i = 1,...,k. The goal is to show that
such an expression exists for p with k <n + 1.

Ifk > n + 1,then {vy, ..., v} is affinely dependent, by Exercise 12 in Section 8.2.
Thus there exist scalars dj, . . ., dj, not all zero, such that

k k
Zdivj =0 and Zd,- =0
i=1 i=1
Consider the two equations
CiVi + Vo + -+ CkVie = P

and
diyvi+dyvo+-+dpvi =0

By subtracting an appropriate multiple of the second equation from the first, we now
eliminate one of the v; terms and obtain a convex combination of fewer than k elements
of S that is equal to p.
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Since not all of the d; coefficients are zero, we may assume (by reordering sub-
scripts if necessary) that d; > 0 and that ¢; /d). < ¢;/d; for all those i for which d; > 0.
Fori =1,...,k,letb; = ¢; — (cx/dy)d;. Then by = 0 and

k k k
_ % —1_0=
Zbi—Zc, ded, 1-0=1

i=1 i=1 i=l1

Furthermore, each b; > 0. Indeed, if d; <0, then b; > ¢; > 0. If d; > 0, then b; =
di(c;/d; — ci/dy) = 0. By construction,

k—1 k k
Zbivi = ;b[V[ = Z (C,’ — %d,»)v,-

i=1 i=1

k k k
Ck
=§ Civi__E divi=E Civi =P
— dk
i=

i=1 i=1

Thus p is now a convex combination of k — 1 of the points vy, .. ., V. This process may
be repeated until p is expressed as a convex combination of at most n + 1 of the points
of S. -

The following example illustrates the calculations in the proof above.

EXAMPLE 4 Let

[8) woB) o) o) o

and S = {vy, vy, V3, v4}. Then

[STRNI

|

JTVI + éVz + %V3 + 11—2V4 =p )

Use the procedure in the proof of Caratheodory’s Theorem to express p as a convex
combination of three points of S.

SOLUTION The set S is affinely dependent. Use the technique of Section 8.2 to obtain
an affine dependence relation

—5V1 + 4V2 - 3V3 + 4V4 =0 (3)

Next, choose the points v, and v4 in (3), whose coefficients are positive. For each
point, compute the ratio of the coefficients in equations (2) and (3). The ratio for v,
is é —4 = 2—14, and that for v, is % —4 = ﬁ. The ratio for v4 is smaller, so subtract 4—18
times equation (3) from equation (2) to eliminate vy4:

(4 fmit (= v+ (b4 v+ (b =
BVt V2t Bvi=p u

This result cannot, in general, be improved by decreasing the required number of
points. Indeed, given any three non-collinear points in R?, the centroid of the triangle
formed by them is in the convex hull of all three, but is not in the convex hull of any two.
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PRACTICE PROBLEMS

6 7 -2 1 3
1. Letvi=|(2 |, vo=| 1], vz = 4 |1,pp=1|3|,and p, = 2 |, and let
2 5 —1 1 1

S = {vi, v, v3}. Determine whether p, and p, are in conv S.

2. Let S be the set of points on the curve y = 1/x for x > 0. Explain geometrically
why conv S consists of all points on and above the curve S.

8.3 EXERCISES

1. In R2. let S = 0. 0<y< 1} U % |:2i|} Describe Exercises 7-10 use the terminology from Section 8.2.
, y 0= olf
(or sketch) the convex hull of S'. 7. 2. LetT = { [_(1) ], |:§i|’ [Ti” ,and let
2. Describe the convex hull of the set S of points |:; ] in R? b 3 D) 0
= s = s = N d = .
that satisfy the given conditions. Justify your answers. (Show P [ 1 ] P2 [ 2 ] Ps [ 0 ] ane Py [ 2 ]

that an arbitrary point p in S belongs to conv §.)

Find the barycentric coordinates of p,, p,, Pz, and p, with
a. y=1/xandx >1/2 Yy Pi>P2:Ps P4

respectto 7.
b. y =sinx . .

b. Use your answers in part (a) to determine whether each
c. y=x"2andx >0 of p;,...,p, in part (a) is inside, outside, or on the edge

. o . . . . of conv T, a triangular region.
3. Consider the points in Exercise 5 in Section 8.1. Which of

P;.P,.and p; are in conv §? 8. Repeat Exercise 7 for T = { [3], [2], |: _} ]} and
4. Consider the points in Exercise 6 in Section 8.1. Which of
P, P,,and p; are in conv S? 2 1 1 1
P = s Py = . Py = , and p, = .
1 1 1 0
5. Let 3
9. Let S = {vy, vy, V3, vy} be an affinely independent set. Con-
-1 0 1 1 sider the points p,,...,ps; whose barycentric coordinates
vi=| 3 |.va=|-3|.vs=|-11|,vy= 1, with respect to S are given by (2,0,0,—1), (0,1.4.1).
4 1 4 -2 (3.0.2.-1), (3. 5. 5. ¢). and (3.0, 2,0), respectively. De-
1 0 termine whether each of p,, ..., ps is inside, outside, or on
_ the surface of conv S, a tetrahedron. Are any of these points
p=|-1[p=|-2|
2 ) on an edge of conv S?
10. szpeat Ex'ercise 9'f0r the points q, .. - Qs whos? blar}lfce;n-
and S = {v1, V2, vs, v}. Determine whether p, and p, are in tr;c C(:ordlrllates w1t3h ]respect to S are given by (gl 1], gl 5),
conv S. (17 -0, 5)7 (O, ) 170), 0,-2,0,3), and (g, 3 g,o),
respectively.
_ -1
(2) g f 2 In Exercises 11 and 12, mark each statement True or False. Justify
6. Letv, = . L V) = ) LV = 0 P, = _% s each answer.
2 1 2 5 11. a. fy=cvi+cva+cevzande, +c+c3 =1,theny
. 6 2 is a convex combination of vy, v,, and vs.
2 -1 b. If S is a nonempty set, then conv S contains some points
0 —4 -2 .
p, = 1= Nk and p, = ol and let S be that are not in S.
‘7‘ | 4 c. If S and T are convex sets, then S U T is also convex.
4 - . . . . .
the orthogonal set {v;, v, v3}. Determine whether each p; is 12. a. A setisconvex if X,y € S implies that the line segment
in Span S, aff S, or conv S. between x and y is contained in S.
a. p, b. p, c. ps3 d. p, b. If S and T are convex sets, then S N T is also convex.
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c. If S isanonempty subsetof R? andy € conv S, then there
exist distinct points vy, . .., V¢ in S such thaty is a convex
combination of vy, ..., Vg.

13. Let S be a convex subset of R” and suppose that
f:R" — R” is a linear transformation. Prove that the set
f(S) ={f(x):x e S}isaconvex subset of R”.

14. Let f:R" — R™ be a linear transformation and let
T be a convex subset of R™. Prove that the set
S ={xeR": f(x) € T} is a convex subset of R".

15. Let v = |:(1):|, vy, = |:;i|, V3 = [;i|, V4 = [g], and

p= [ f } . Confirm that

1 I 1 1
P=3Vit+t3Va+gvi+ vy and vi—Vvo +v3—v, = 0.

Use the procedure in the proof of Caratheodory’s Theorem
to express p as a convex combination of three of the v;’s. Do
this in rwo ways.

0 3

V3 = [?:|,v4 = [_}i|,andp= [;],giventhat

_ 1 7 37 1
P=1gVi+ V2t V3 + Ve

16. Repeat Exercise 15 for points v; = [_1], vy = [0],

and
10vy — 6vy, + 7v3 — 11vy = 0.

In Exercises 17-20, prove the given statement about subsets A
and B of R". A proof for an exercise may use results of earlier
exercises.

17. If A C B and B is convex, then conv A C B.
18. If A C B,thenconv A C conv B.
19. a. [(conv A) U (conv B)] C conv (A U B)

20.

21.

22.
23.

24.

b. Find an example in R? to show that equality need not hold
in part (a).
conv (A N B) C [(conv A) N (conv B)]

b. Find an example in R? to show that equality need not hold
in part (a).

®

Let py,, p,, and p, be points in R", and define
fo(t) = (1= 0Py + 1Py, £i(t) = (1= 1)p, + 1p,.  and
g(t) = (1 —)fy(t) + tf,(¢) for 0 <t < 1. For the points
as shown below, draw a picture that shows f, (), f; (3),and

g(3)-

p]‘ p2

Py

Repeat Exercise 21 for £, (3), £, (3),and g (3).

Let g(¢) be defined as in Exercise 21. Its graph is called
a quadratic Bézier curve, and it is used in some computer
graphics designs. The points p,, p,, and p, are called the
control points for the curve. Compute a formula for g(r)
that involves only py, p,, and p,. Then show that g(¢) is in
conv {p,,p;,p,y for0 < < 1.

Given control points p,, p;, P,, and p; in R”, let g, (¢)
for 0 <t <1 be the quadratic Bézier curve from Exer-
cise 23 determined by p,, p;, and p,, and let g,(¢) be
defined similarly for p,, p,, and p;. For 0 <t <1, define
h(t) = (1 —t)g,(t) + tg,(t). Show that the graph of h(¢)
lies in the convex hull of the four control points. This curve
is called a cubic Bézier curve, and its definition here is one
step in an algorithm for constructing Bézier curves (discussed
later in Section 8.6). A Bézier curve of degree k is determined
by k + 1 control points, and its graph lies in the convex hull
of these control points.

SOLUTIONS TO PRACTICE PROBLEMS

1. The points vy, v,, and v are not orthogonal, so compute

1 -8 -5 -3
v,—-vi=|-1]|,vz—v; = 2(,p—Vvi= I |,andp, — v, = 0
-3 —1 —1

Augment the matrix [v, —v; v3 —v; ] with both p; — v, and p, — v;, and row

reduce:

1

-1

3

-8
2
-3

5 -3 1o 1 1

2 1
1 of~lo 1 2 !
-t 0 0 0 -3

The third column shows that p; — v, = %(Vz —-vy) + %(V3 —vy), which leads to

p; = 0v; + %vz + %V3. Thus p; isin conv S In fact, p, is in conv {v,, v3}.
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The last column of the matrix shows that p, — v; is not a linear combination of
v, — vy and v3 — v;. Thus p, is not an affine combination of vy, v,, and v3, so p,
cannot possibly be in conv S'.

An alternative method of solution is to row reduce the augmented matrix of
homogeneous forms:

1 0 0 0
% % % By 0 1 10
Vi V2 V3 Pp Prf~ 2

0 0 2 0

0o 0 0 0 1

2. If p is a point above S, then the line through p with slope —1 will intersect S at two
points before it reaches the positive x- and y-axes.

Hyperplanes play a special role in the geometry of R” because they divide the space into
two disjoint pieces, just as a plane separates R into two parts and a line cuts through
R2. The key to working with hyperplanes is to use simple implicit descriptions, rather
than the explicit or parametric representations of lines and planes used in the earlier
work with affine sets.!

An implicit equation of a line in R? has the form ax + by = d. An implicit equa-
tion of a plane in R? has the form ax + by + ¢z = d. Both equations describe the
line or plane as the set of all points at which a linear expression (also called a linear
functional) has a fixed value, d .

A linear functional on R” is a linear transformation f from R” into R. For each
scalar d in R, the symbol [ f: d] denotes the set of all x in R” at which the value
of fis d. Thatis,

[f:d] istheset {xeR": f(x) =d}

The zero functional is the transformation such that f(x) = 0 for all x in R". All
other linear functionals on R” are said to be nonzero.

EXAMPLE 1 1In R?, the line x — 4y = 13 is a hyperplane in R?, and it is the set
of points at which the linear functional f(x, y) = x — 4y has the value 13. That is, the
line is the set [ f: 13]. ]

EXAMPLE 2 InR?,the plane 5x — 2y + 3z = 21 is a hyperplane, the set of points
at which the linear functional g(x, y,z) = 5x — 2y + 3z has the value 21. This hyper-
plane is the set [g:21]. [ ]

If f is alinear functional on R”, then the standard matrix of this linear transforma-
tion fisal x n matrix A,say A = [a; a» -+ a,].So
[f:0] isthesameas {x € R": Ax =0} =Nuld (1)

! Parametric representations were introduced in Section 1.5.
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If f is a nonzero functional, then rank A = 1, and dim Nul A = n — 1, by the Rank
Theorem.? Thus, the subspace [ f : 0] has dimension 7 — 1 and so is a hyperplane. Also,
if d is any number in R, then

[f:d] isthesameas {xeR": Ax=d} 2)

Recall from Theorem 6 in Section 1.5 that the set of solutions of Ax = b is obtained
by translating the solution set of Ax = 0, using any particular solution p of Ax = b.
When A is the standard matrix of the transformation f', this theorem says that

[f:d]=[f:0]4+p foranypin[f:d] 3)
Thus the sets [ f : d] are hyperplanes parallel to [ f : 0]. See Figure 1.

[f:d]—_

[f: 01—

FIGURE 1 Parallel hyperplanes,
with f(p) =d.

When A4 is a 1 x n matrix, the equation Ax = d may be written with an inner
product n-x, using n in R” with the same entries as A. Thus, from (2),

[f:d] isthesameas {xeR":n-x=d} “)

Then [ f:0] = {x € R": n-x = 0}, which shows that [ f:0] is the orthogonal comple-
ment of the subspace spanned by n. In the terminology of calculus and geometry for R3,
n is called a normal vector to [ /: 0]. (A “normal” vector in this sense need not have unit
length.) Also, n is said to be normal to each parallel hyperplane [ f: d], even though
n-x is not zero when d # 0.

Another name for [ f: d] is a level set of f, and n is sometimes called the gradient
of f when f(x) = n-x for each x.

EXAMPLE 3 Letn = [i] and v = [_é

[f:12],where f(x,y) = 3x + 4y.Thus H is the line 3x + 4y = 12. Find an implicit
description of the parallel hyperplane (line) H; = H + v.

i|,andletH ={x:n-x=12},s0 H =

SOLUTION First, find a point p in H;. To do this, find a point in H and add v to it.

For instance, [(3)] isin H,sop = [_é} + |:(3)} = [_;} is in H;. Now, compute

n-p = —9. This shows that H; = [f: — 9]. See Figure 2, which also shows the sub-
space Hy = {x : n-x = 0}. [ ]

The next three examples show connections between implicit and explicit descrip-
tions of hyperplanes. Example 4 begins with an implicit form.

2 See Theorem 14 in Section 2.9 or Theorem 14 in Section 4.6.
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H=[f:12]

Hy=1£:0]

Hy=[f:-9]

FIGURE 2

EXAMPLE 4 In R?, give an explicit description of the line x — 4y = 13 in para-
metric vector form.

SOLUTION This amounts to solving a nonhomogeneous equation Ax = b, where 4 =
[1 —4]andb is the number 13 in R. Write x = 13 + 4y, where y is a free variable.
In parametric form, the solution is

x| | 134+4y | |13 41
ot el Rl B B A Y B S IR
Converting an explicit description of a line into implicit form is more involved. The
basic idea is to construct [ /: 0] and then find d for [f:d].

EXAMPLE 5 Letv, = [;i| and v, = [g:|, and let L; be the line through v; and

v,. Find a linear functional f and a constant d such that L; = [ f:d].

SOLUTION The line L, is parallel to the translated line L, through v, — v; and the
origin. The defining equation for L has the form

[a b][;}:o or n-x=0, where nz[Z} 5)

Since n is orthogonal to the subspace L, which contains v, — v, compute

wo=o)-la)= 1]

la b][_g]:o

By inspection, a solution is [@ b]=[2 5]. Let f(x,y) = 2x + 5y. From (5),
Ly =1[f:0], and L, = [f:d] for some d. Since v; is on line Ly, d = f(v;) =
2(1) + 5(2) = 12. Thus, the equation for L; is 2x 4+ 5y = 12. As a check, note that

and solve

f(va) = f(6,0) = 2(6) + 5(0) = 12,50 v, is on Ly, too. ]
1 2 3

EXAMPLE 6 Letv;=|1|,vo=| —1|,andv; = | 1 |.Find an implicit de-
1 4 2

scription [ f: d] of the plane H; that passes through vy, v,, and v3.
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SOLUTION H, is parallel to a plane H, through the origin that contains the translated
points
1 2
vVo—vVvy = | =2 and vz—v;=|0
3 1

Since these two points are linearly independent, Hy = Span{v, — v, v3 —v;}. Let
a

n = | b | bethe normal to Hy. Then v, — v; and v3 — v are each orthogonal to n. That
c

is, (v2 —vy):n = 0 and (vz — vy)-n = 0. These two equations form a system whose

augmented matrix can be row reduced:

a a
[1 -2 3]|6|=0 [2 0 1]|b]|=0, [1 23 O}
c c

Row operations yield a = (—%)c, b= (%)c, with ¢ free. Set ¢ = 4, for instance. Then

-2
n= 5 [ and Hy = [f:0], where f(x) = —2x; + 5x, + 4x3.

4

The parallel hyperplane H, is [f:d]. To find d, use the fact that v; is in H,

and compute d = f(v;) = f(1,1,1) = =2(1) + 5(1) + 4(1) = 7. As a check, com-

pute f(v2) = f(2,—1,4) = =2(2) + 5(—1) + 4(4) = 16 —9 = 7. Observe f(v3) =

7 also. [ |

The procedure in Example 6 generalizes to higher dimensions. However, for the
special case of R?, one can also use the cross-product formula to compute n, using a
symbolic determinant as a mnemonic device:

n = (v —vy) x(v3 —vy)
1 2

i
2 0 1 2 1 2
== 0 jz' i—‘ b+‘ F
o 301 301 2 0
)
=-2i+5+4k=| 5
4

If only the formula for f is needed, the cross-product calculation may be written
as an ordinary determinant:

1 2 X1
-2 1 2 2
frnx,x3)=[-2 0 x|= x| — X+ X3
3 1 3 1 — 0
3 1 X3

= —2Xx1 + 5x2 + 4x3

So far, every hyperplane examined has been described as [ f:d] for some linear
functional f and some d in R, or equivalently as {x € R”: n-x = d} for some n in R".
The following theorem shows that every hyperplane has these equivalent descriptions.

THEOREM 11 A subset H of R” is a hyperplane if and only if H = [f:d] for some nonzero
linear functional f and some scalar d in R. Thus, if H is a hyperplane, there
exist a nonzero vector n and a real number d such that H = {x : n-x = d}.
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The set S is closed and bounded.
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PROOF Suppose that H is a hyperplane, take p € H, and let Hy = H — p. Then H
is an (n — 1)-dimensional subspace. Next, take any point y that is not in Hy. By the
Orthogonal Decomposition Theorem in Section 6.3,

Y=y, +n

where y, is a vector in Hy and n is orthogonal to every vector in Hy. The function f
defined by
f(x) =n-x forxeR"

is a linear functional, by properties of the inner product. Now, [ f: 0] is a hyperplane that
contains Hy, by construction of n. It follows that

Ho = [f:0]

[Argument: H, contains a basis S of n — 1 vectors, and since S is in the (n — 1)-
dimensional subspace [ f:0], S must also be a basis for [ f: 0], by the Basis Theorem.]
Finally, let d = f(p) = n-p. Then, as in (3) shown earlier,

[f:d]=[f:001+p=Hy+p=H
The converse statement that [ f: d] is a hyperplane follows from (1) and (3) above. ®
Many important applications of hyperplanes depend on the possibility of “separat-
ing” two sets by a hyperplane. Intuitively, this means that one of the sets is on one side

of the hyperplane and the other set is on the other side. The following terminology and
notation will help to make this idea more precise.

TOPOLOGY IN R": TERMS AND FACTS

For any point p in R” and any real § > 0, the open ball B(p, §) with center p and
radius § is given by

B(p.8) = {x: [x—pl <4

Given a set S in R”, a point p is an interior point of S if there exists a § > 0
such that B(p, §) C S.If every open ball centered at p intersects both S and the
complement of S, then p is called a boundary point of S. A set is open if it
contains none of its boundary points. (This is equivalent to saying that all of its
points are interior points.) A set is closed if it contains all of its boundary points.
(If S contains some but not all of its boundary points, then S is neither open nor
closed.) A set S is bounded if there exists a § > 0 such that S C B(0,§). A set
in R” is compact if it is closed and bounded.

Theorem: The convex hull of an open set is open, and the convex hull of a
compact set is compact. (The convex hull of a closed set need not be closed. See
Exercise 27.)

EXAMPLE 7 Let

el R w3} o e[

as shown in Figure 3. Then p, is an interior point since B (p, %) C S. The point p,
is a boundary point since every open ball centered at p, intersects both S and the
complement of S. The set S is closed since it contains all its boundary points. The
set S is bounded since S C B(0,3). Thus S is also compact. [ ]
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Notation: 1f f is alinear functional, then f(A) < d means f(x) < d foreachx € A.
Corresponding notations will be used when the inequalities are reversed or when they
are strict.

The hyperplane H = [ f: d] separates two sets A and B if one of the following
holds:

(i) f(A) <dand f(B)>d, or
(i) f(A) >dand f(B) <d.

If in the conditions above all the weak inequalities are replaced by strict inequal-
ities, then H is said to strictly separate A and B.

Notice that strict separation requires that the two sets be disjoint, while mere sep-
aration does not. Indeed, if two circles in the plane are externally tangent, then their
common tangent line separates them (but does not separate them strictly).

Although it is necessary that two sets be disjoint in order to strictly separate them,
this condition is not sufficient, even for closed convex sets. For example, let

1 1
A:H:x:|:x2—and—§y§2} and B:H:x:|:x20andy:0
y 2 X y

Then A and B are disjoint closed convex sets, but they cannot be strictly separated
by a hyperplane (line in R?). See Figure 4. Thus the problem of separating (or strictly
separating) two sets by a hyperplane is more complex than it might at first appear.

>

=

FIGURE 4 Disjoint closed convex sets.

There are many interesting conditions on the sets A and B that imply the existence
of a separating hyperplane, but the following two theorems are sufficient for this section.
The proof of the first theorem requires quite a bit of preliminary material,’ but the second
theorem follows easily from the first.

THEOREM 12 Suppose A and B are nonempty convex sets such that 4 is compact and B is
closed. Then there exists a hyperplane H that strictly separates A and B if and
onlyif AN B = @.

THEOREM 13 Suppose 4 and B are nonempty compact sets. Then there exists a hyperplane that
strictly separates A and B if and only if (conv A) N (conv B) = @.

3 A proof of Theorem 12 is given in Steven R. Lay, Convex Sets and Their Applications (New York: John
Wiley & Sons, 1982; Mineola, NY: Dover Publications, 2007), pp. 34-39.
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PROOF Suppose that (conv A) N (conv B) = @. Since the convex hull of a compact
set is compact, Theorem 12 ensures that there is a hyperplane H that strictly separates
conv A and conv B. Clearly, H also strictly separates the smaller sets A and B.

Conversely, suppose the hyperplane H = [ f:d] strictly separates A and B. With-
out loss of generality, assume that f(A) < d and f(B) > d.Letx = ¢|X; + - -+ + kX
be any convex combination of elements of A. Then

X =afx)+-+afx) <ad+--+cagd=d

since ¢y + -4+ ¢ = 1. Thus f(conv A) < d. Likewise, f(convB) > d, so H =
[ f:d] strictly separates conv A and conv B. By Theorem 12, conv A and conv B must
be disjoint. [ |

EXAMPLE 8 Let

2 -3 3 1 2
a = 1 , Ay = 2 , A3 = 4 N b1 = 0 s and b2 = -1 s
1 1 0 2 5

andlet A = {a;, a;,a3} and B = {by, b,}. Show that the hyperplane H = [f:5], where
f(x1,x2,x3) = 2x; — 3x5 + x3, does not separate A and B. Is there a hyperplane par-
allel to H that does separate A and B? Do the convex hulls of A and B intersect?

SOLUTION Evaluate the linear functional f at each of the points in A and B:

f@) =2 fa)=-1l. flas) =-6, f(b)=4, and f(by) =12

Since f(by) = 4islessthan 5 and f(b,) = 12 is greater than 5, points of B lie on both
sides of H = [f:5] and so H does not separate A and B.

Since f(A) < 3 and f(B) > 3, the parallel hyperplane [ f: 3] strictly separates A
and B. By Theorem 13, (conv 4) N (conv B) = .

Caution: If there were no hyperplane parallel to H that strictly separated 4 and B,
this would not necessarily imply that their convex hulls intersect. It might be that some
other hyperplane not parallel to H would strictly separate them. [ |

PRACTICE PROBLEM

1 —1 1 -2
Letp, =0 |.p, = 21,n = 1 |,and n, = 1 |; let H, be the hyper-
2 1 -2 3
plane (plane) in R? passing through the point p; and having normal vector n;; and let
H, be the hyperplane passing through the point p, and having normal vector n,. Give

an explicit description of H; N H, by a formula that shows how to generate all points
in H 1N Hz.

1. Let L be the line in R? through the points |: _i] and |: 3 ] 2. Let L be the line in R? through the points |:‘11:| and [ -2 :|

1 -1

Find a linear functional f and a real number d such that Find a linear functional f and a real number d such that

L=[f:d].

L=[f:d].
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In Exercises 3 and 4, determine whether each set is open or closed
or neither open nor closed.
3. a. {(x,y):y>0}
b. {(x,y):x=2and1 <y <3}
c. {(x,y):x=2and1 <y <3}
d. {(x,y):xy=1landx > 0}

e. {(x,y):xy>1landx >0}
4. a. {(x,y):x2+yr=1}
b {(x,y) X +y7 > 1}

>
c. {(x,y):x?+y><1landy >0}
d. {(x,y):y=x%
e. {(x,y):y<x?

In Exercises 5 and 6, determine whether or not each set is compact
and whether or not it is convex.

5. Use the sets from Exercise 3.
6. Use the sets from Exercise 4.

In Exercises 7-10, let H be the hyperplane through the listed
points. (a) Find a vector n that is normal to the hyperplane. (b) Find
a linear functional f and a real number d such that H = [f: d].

1 2 [ —1 1 4 7
0 I O O B A 8. | 2|, —21|,] —4
L3 ] L1] L 5 1 3 4
177 27 [1 1
0 3 2 1
2 | O O O I I e I |
LO | LO] LO 1
177 [ 2 1 3
2 2 3 2
L I N T B IS
o] [=3] [7] [ -1
1 2 0 -2
1 1 0
11. Let p = 1= s|PVi= = e
2 —1 1 3
1
and v3 = g , and let H be the hyperplane in R* with

4
normal n and passing through p. Which of the points vy, v,,
and v; are on the same side of H as the origin, and which are

not?
2 3 —1 0
12. Leta; = | =1 |,aa=|1 |,a3 = 6 |,b, = 51,
5 3 0 -1
1 2 3
b= -3, by=|[2], and n= 1], and let
-2 1 -2

A ={a,,a,a;} and B = {b, b,, b3}. Find a hyperplane H

13.

14.

with normal n that separates A and B. Is there a hyperplane
parallel to H that strictly separates A and B?

2 1 1
Let p, = _i N _? , Iy = i , and
2 3 2
2
n, = ? ; let H; be the hyperplane in R* through p, with
5

normal n;; and let H, be the hyperplane through p, with
normal n,. Give an explicit description of H; N H,. [Hint:
Find a point p in H; N H, and two linearly independent
vectors v; and v, that span a subspace parallel to the 2-
dimensional flat H, N H,.]

Let F| and F, be 4-dimensional flats in R®, and suppose that
F, N F, # @.What are the possible dimensions of F; N F,?

In Exercises 15-20, write a formula for a linear functional f and
specify a number d, so that [ f': d] is the hyperplane H described
in the exercise.

15.

16.

17.

18.

19.

20.

Let Abethe 1 x 4matrix[1 -3 4 —2] andleth = 5.Let
H = {xinR*: Ax = b}.

Let A be the 1 x5 matrix [2 5 =3 0 6]. Note that
Nul A is in R3. Let H = Nul 4.

Let H be the plane in R? spanned by the rows of B =

0 2 4
related to Nul B? See Section 6.1.]

|:1 3 5]. That is, H = Row B. [Hint: How is H

Let H be the plane in R? spanned by the rows of B =
1 4 =5 .
|:0 5 8:|.That1s,H—RowB.
1 0]
Let H be the column space of the matrix B = 4 2.
-7 —6

-~

Thatis, H = Col B. [Hint: How is Col B related to Nul B”
See Section 6.1.]

1 0
Let H be the column space of the matrix B = 5 2
—4 —4

That is, H = Col B.

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

a. A linear transformation from R to R” is called a linear
functional.

b. If f is alinear functional defined on R”, then there exists
areal number k such that f(x) = kx for all x in R”".

c. If a hyperplane strictly separates sets A and B, then
ANB=a.

d. If A and B are closed convex sets and A N B = &, then
there exists a hyperplane that strictly separates A and B.
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22.

23.

24,

a. If d is areal number and f is a nonzero linear functional
defined on R”, then [ f: d] is a hyperplane in R”.

b. Given any vector n and any real number d, the set
{x :n-x = d} is a hyperplane.

c. If A and B are nonempty disjoint sets such that A is
compact and B is closed, then there exists a hyperplane
that strictly separates A and B.

d. If there exists a hyperplane H such that H does not

strictly separate two sets A and B, then (conv A)N
(conv B) # @.

Letv, = |:}i|,V2= [(3)]"'32 [;],andpz [T].Find

ahyperplane [ f: d] (in this case, a line) that strictly separates
p from conv {vy, v5, v3}.

Repeat Exercise 23 for v| = [;:|,v2 = [f]"@ = [i]’

andp = [g

25.

26.

27.

28.

29.

30.

8.5 Polytopes 471

Let p = [f

rates B(0,3) and B(p, 1). [Hint: After finding f, show that
the point v = (1 —.75)0 + .75p is neither in B(0, 3) nor in
B(p.1)]

]. Find a hyperplane [ f:d] that strictly sepa-

Letq = |:§] and p = [?] Find a hyperplane [ f: d] that
strictly separates B(q, 3) and B(p, 1).

Give an example of a closed subset S of R? such that conv S
is not closed.

Give an example of a compact set 4 and a closed set B in R?
such that (conv A) N (conv B) = @ but A and B cannot be
strictly separated by a hyperplane.

Prove that the open ball B(p,8) = {x: ||x—p| <8} is a
convex set. [Hint: Use the Triangle Inequality.]

Prove that the convex hull of a bounded set is bounded.

SOLUTION TO PRACTICE PROBLEM

First,computen;- p; = —

3andn,- p, = 7.The hyperplane H, is the solution set of the

equation x| + x, — 2x3 = —3, and H, is the solution set of the equation —2x; + x, +

3x3 = 7. Then

HiNH, ={x:x;+x;—2x3 =—-3and —2x; + x, + 3x3 = 7}

This is an implicit description of H; N H,. To find an explicit description, solve the
system of equations by row reduction:

E

1
1

) _3] |:1 0 —% —%]
1 1
37 0 I -3 3

10

3

Th _ 10 5 _ 1 1 _ L — 1
us Xy = —35 + 3X3,X = 3 + 3x3,%3 = x3.Letp = 3

0

andv = . The

W= wln

—_

general solution can be written as X = p + x3v. Thus H| N H, is the line through p in
the direction of v. Note that v is orthogonal to both n; and n,.

8.5  POLYTOPES

This section studies geometric properties of an important class of compact convex sets
called polytopes. These sets arise in all sorts of applications, including game theory
(Section 9.1), linear programming (Sections 9.2 to 9.4), and more general optimization
problems, such as the design of feedback controls for engineering systems.
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A polytope in R” is the convex hull of a finite set of points. In R?, a polytope
is simply a polygon. In R3, a polytope is called a polyhedron. Important features of
a polyhedron are its faces, edges, and vertices. For example, the cube has 6 square
faces, 12 edges, and 8 vertices. The following definitions provide terminology for higher
dimensions as well as R? and R3. Recall that the dimension of a set in R” is the dimen-
sion of the smallest flat that contains it. Also, note that a polytope is a special type of
compact convex set, because a finite set in R” is compact and the convex hull of this set
is compact, by the theorem in the topology terms and facts box in Section 8 .4.

Let S be a compact convex subset of R”. A nonempty subset F' of S is called
a (proper) face of S if F # S and there exists a hyperplane H = [f:d] such
that F = S N H and either f(S) < d or f(S) > d. The hyperplane H is called
a supporting hyperplane to S. If the dimension of F is k, then F' is called a
k-face of S.

If P is a polytope of dimension &, then P is called a k-polytope. A 0-face of P
is called a vertex (plural: vertices), a 1-face is an edge, and a (k — 1)-dimensional
face is a facet of S.

EXAMPLE 1 Suppose S is a cube in R>. When a plane H is translated through
R3 until it just touches (supports) the cube but does not cut through the interior of the
cube, there are three possibilities for H N S, depending on the orientation of H . (See

Figure 1.)
H N S may be a 2-dimensional square face (facet) of the cube.
H N § may be a 1-dimensional edge of the cube.
H N S may be a 0-dimensional vertex of the cube. [ |
H
. H
S S S
H
H N S is 2-dimensional. H N Sis 1-dimensional. H N S is 0-dimensional.
FIGURE 1

Most applications of polytopes involve the vertices in some way, because they have
a special property that is identified in the following definition.

Let S be a convex set. A point p in S is called an extreme point of S if p is
not in the interior of any line segment that lies in S. More precisely, if X,y € S
and p € Xy, then p = x or p = y. The set of all extreme points of S is called the
profile of S.



FIGURE 2
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A vertex of any compact convex set S is automatically an extreme point of S. This
fact is proved during the proof of Theorem 14, below. In working with a polytope, say
P =conv{vy,...,vi}forvy,..., v, in R”, it is usually helpful to know that vy, ..., vy
are the extreme points of P. However, such a list might contain extraneous points. For
example, some vector v; could be the midpoint of an edge of the polytope. Of course,
in this case v; is not really needed to generate the convex hull. The following definition
describes the property of the vertices that will make them all extreme points.

The set {vy,...,Vx} is a minimal representation of the polytope P if P =
conv{vi,...,vi}andforeachi =1,...,k,v; €conviv;: j #i}.
Every polytope has a minimal representation. For if P = conv {vy,..., v} and if

some v; is a convex combination of the other points, then v; may be deleted from the
set of points without changing the convex hull. This process may be repeated until the
minimal representation is left. It can be shown that the minimal representation is unique.

Suppose M = {vy, ..., Vi }is the minimal representation of the polytope P.Then
the following three statements are equivalent:

a. peM.
b. pisa vertex of P.

c. p is an extreme point of P.

PROOF (a) = (b) Suppose p € M and let Q = conv{v:v € M and v # p}. It fol-
lows from the definition of M thatp ¢ Q,and since Q is compact, Theorem 13 implies
the existence of a hyperplane H’ that strictly separates {p} and Q.Let H be the hyper-
plane through p parallel to H'. See Figure 2.

Then Q lies in one of the closed half-spaces Ht bounded by H andso P € H™.
Thus H supports P at p. Furthermore, p is the only point of P that can lie on H, so
H N P = {p}andpisavertex of P.

(b) = (c) Let p be a vertex of P. Then there exists a hyperplane H = [f:d] such
that H N P = {p} and f(P) > d. If p were not an extreme point, then there would
exist points x and y in P such that p = (1 —¢)x + ¢y with 0 < ¢ < 1. That is,

ey=p-(-ox md y=(:)o-(;-1)w

It follows that f(y) = %f(p) — (é - 1)f(x). But f(p) =d and f(x) > d,so

10 = (3= (1)@ =d

On the other hand,y € P,so f(y) > d. 1t follows that f(y) = d andthaty € H N P.
This contradicts the fact that p is a vertex. So p must be an extreme point. (Note that
this part of the proof does not depend on P being a polytope. It holds for any compact
convex set.)

(c) = (a) Itis clear that any extreme point of P must be a member of M . [ |
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THEOREM 15

THEOREM 16

EXAMPLE 2 Recall that the profile of a set S is the set of extreme points of S.
Theorem 14 shows that the profile of a polygon in R? is the set of vertices. (See Figure 3.)
The profile of a closed ball is its boundary. An open set has no extreme points, so its
profile is empty. A closed half-space has no extreme points, so its profile is empty. M

FIGURE 3

Exercise 18 asks you to show that a point p in a convex set S is an extreme point
of § if and only if, when p is removed from S, the remaining points still form a convex
set. It follows that if S* is any subset of S such that conv §* is equal to S, then S* must
contain the profile of S. The sets in Example 2 show that in general S* may have to be
larger than the profile of S. It is true, however, that when S is compact, we may actually
take S to be the profile of S, as Theorem 15 will show. Thus every nonempty compact
convex set S has an extreme point, and the set of all extreme points is the smallest subset
of S whose convex hull is equal to S'.

Let S be a nonempty compact convex set. Then S is the convex hull of its profile
(the set of extreme points of S).

PROOF The proof is by induction on the dimension of the set S.! [ |

One important application of Theorem 15 is the following theorem. It is one of the
key theoretical results in the development of linear programming. Linear functionals
are continuous, and continuous functions always attain their maximum and minimum
on a compact set. The significance of Theorem 16 is that for compact convex sets, the
maximum (and minimum) is actually attained at an extreme point of S.

Let f be a linear functional defined on a nonempty compact convex set S. Then
there exist extreme points v and w of S such that

f(V) =max f(v) and f(W) = min f(v)

PROOF Assume that f attains its maximum m on S at some point v/ in S. That is,
f(v') = m. We wish to show that there exists an extreme point in S with the same
property. By Theorem 15, v’ is a convex combination of the extreme points of S. That
is, there exist extreme points vy, ..., vk of § and nonnegative cy, ..., ¢x such that

V=cvi+--+cvpg withey+--Fc¢=1
If none of the extreme points of S satisfies f(v) = m, then

f(vi)<m fori=1,...,k

! The details may be found in Steven R. Lay, Convex Sets and Their Applications (New York: John Wiley &
Sons, 1982; Mineola, NY: Dover Publications, 2007), p. 43.
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since m is the maximum of f on S. But then, because f is linear,

m= f(v)= f(civi + -+ ckV)
=c f(v) + -+ e f(vi)
<cm~+--+ceem=m(c;+--+ck)=m

This contradiction implies that some extreme point v of S must satisfy f (V) = m.
The proof for w is similar. ]

EXAMPLE 3 Given points p; = [_é],pz = |:?],andp3 = [é} inR2,letS =

conv {p,, pP,, P3}. For each linear functional f, find the maximum value m of f on the
set S, and find all points x in S at which f(x) = m.

a. f](X],)Cz) =X + X2 b. fz(X],Xz) = =3x1 4+ x, C. f3(X1,X2) = X1 +2x»

SOLUTION By Theorem 16, the maximum value is attained at one of the extreme points
of S. So to find m, evaluate f at each extreme point and select the largest value.

a. fi(p) = —1, fi(po) = 4,and fi(p3) = 3,50 m; = 4. Graph the line f;(x1,x2) =
my,thatis, x| + x, = 4,and note that x = p, is the only point in S at which fi(x) =

4. See Figure 4(a).

b. f2(py) = 3, f2(p,) = —8,and f2(p;) = —1,som, = 3.Graphtheline fo(x;, x2) =
my, that is, —3x; + x, = 3, and note that x = p, is the only point in S at which

f>(x) = 3. See Figure 4(b).

c. f3(py) = —1, f3(p,) = 5,and f3(p;) = 5,50 m3 = 5. Graph the line f3(x;,x2) =
ms3, that is, x; + 2x, = 5. Here, f3 attains its maximum value at p,, at p;, and at
every point in the convex hull of p, and p5. See Figure 4(c). [ |

-2 P

} T T X1 T T T } } T X1 T ¥ T } T } X1
2 :t\ -2 /P1 2 4 2’ 2 s>

(@) x;+x,=4 (b) 3x;+x,=3 (©)x;+2x,=5

FIGURE 4

The situation illustrated in Example 3 for R? also applies in higher dimensions. The
maximum value of a linear functional f on a polytope P occurs at the intersection of
a supporting hyperplane and P. This intersection is either a single extreme point of P,
or the convex hull of 2 or more extreme points of P. In either case, the intersection is a
polytope, and its extreme points form a subset of the extreme points of P.

By definition, a polytope is the convex hull of a finite set of points. This is an explicit
representation of the polytope since it identifies points in the set. A polytope may also
be represented implicitly as the intersection of a finite number of closed half-spaces.
Example 4 illustrates this in R?.
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EXAMPLE 4 Let

SRS

in R?, and let S = conv {p,, p,, p;}. Simple algebra shows that the line through p, and
p, is given by x; + x, = 1,and S is on the side of this line where

X; + x> 1 or,equivalently, —x; —x, <—1.
Similarly, the line through p, and p3 is x; — x = 1, and S is on the side where
x1—x3 =<1

Also, the line through p; and p; is —x; 4+ 3x, = 3, and § is on the side where

—Xx1 4+ 3x, < 3.
See Figure 5. It follows that S can be described as the solution set of the system of linear
inequalities
—x1—x < —1
X —x2 <1
—x1 +3x, <3
This system may be written as Ax < b, where
-1 -1 N -1
A=| 1 -1, x:[xl], and b= | 1
1 3 2 3

Note that an inequality between two vectors, such as Ax and b, applies to each of the
corresponding coordinates in those vectors. [ ]

FIGURE 5

In Chapter 9, it will be necessary to replace an implicit description of a polytope by
a minimal representation of the polytope, listing all the extreme points of the polytope.
In simple cases, a graphical solution is feasible. The following example shows how to
handle the situation when several points of interest are too close to identify easily on a
graph.

EXAMPLE 5 Let P be the set of points in R? that satisfy Ax < b, where

1 3 18
A=1]1 1 and b= 8
3 2 21

and x > 0. Find the minimal representation of P.
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SOLUTION The condition x > 0 places P in the first quadrant of R?, a typical con-
dition in linear programming problems. The three inequalities in Ax < b involve three
boundary lines:

(1) x; +3x,=18 (2) x; +x2=8 (3) 3x; +2x, =21

All three lines have negative slopes, so a general idea of the shape of P is easy to
visualize. Even a rough sketch of the graphs of these lines will reveal that (0, 0), (7, 0),
and (0, 6) are vertices of the polytope P.

What about the intersections of the lines (1), (2), and (3)? Sometimes it is clear
from the graph which intersections to include. But if not, then the following algebraic
procedure will work well:

When an intersection point is found that corresponds to two inequalities, test it
in the other inequalities to see whether the point is in the polytope.

The intersection of (1) and (2) is p;, = (3,5). Both coordinates are nonnegative,
SO Py, satisfies all inequalities except possibly the third inequality. Test this:

33) +2(5) =19 < 21

This intersection point satisfies the inequality for (3), so p;, is in the polytope.
The intersection of (2) and (3) is p,3 = (5. 3). This satisfies all inequalities except
possibly the inequality for (1). Test this:

1(5) +3(3) = 14 < 18

This shows that p,; is in the polytope.
Finally, the intersection of (1) and (3) is p;3 = (g %) Test this in the inequality
for (2):
27 33 60
1(F)+1(F)=2~86>8
Thus p;; does not satisfy the second inequality, which shows that p,; is not in P. In
conclusion, the minimal representation of the polytope P is

(o} B ED :

The remainder of this section discusses the construction of two basic polytopes
in R? (and higher dimensions). The first appears in linear programming problems, the
subject of Chapter 9. Both polytopes provide opportunities to visualize R* in a remark-
able way.

Simplex

A simplex is the convex hull of an affinely independent finite set of vectors. To construct
a k-dimensional simplex (or k-simplex), proceed as follows:

0-simplex S°: a single point {v;}
1-simplex S':  conv(S° U {v,}), with v, not in aff S°
2-simplex S?:  conv(S!' U {v3}), with v3 not in aff S

k-simplex S¥:  conv(S*~! U {vi11}), with v 4 not in aff S¥~!

The simplex S! is a line segment. The triangle S? comes from choosing a point
v3 that is not in the line containing S' and then forming the convex hull with S'.
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vi vi
[ ]
vi V2 V2 V3
SO SI S2 S3
FIGURE 6

(See Figure 6.) The tetrahedron S* is produced by choosing a point v, not in the plane
of S? and then forming the convex hull with S2.

Before continuing, consider some of the patterns that are appearing. The triangle S?
has three edges. Each of these edges is a line segment like S'. Where do these three line
segments come from? One of them is S'. One of them comes by joining the endpoint
v, to the new point v3. The third comes from joining the other endpoint v; to v3. You
might say that each endpoint in S! is stretched out into a line segment in S2.

The tetrahedron S3 in Figure 6 has four triangular faces. One of these is the original
triangle S2, and the other three come from stretching the edges of S? out to the new
point v4. Notice too that the vertices of S? get stretched out into edges in S3. The other
edges in S come from the edges in S2. This suggests how to “visualize” the four-
dimensional S*.

The construction of S*, called a pentatope, involves forming the convex hull of S*
with a point vs not in the 3-space of S3. A complete picture is impossible, of course,
but Figure 7 is suggestive: S* has five vertices, and any four of the vertices determine
a facet in the shape of a tetrahedron. For example, the figure emphasizes the facet with
vertices vy, Va2, V4, and vs and the facet with vertices v,, V3, v4, and vs. There are five

Vv

FIGURE 7 The 4-dimensional simplex S* projected onto R?, with two
tetrahedral facets emphasized.
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such facets. Figure 7 identifies all ten edges of S*, and these can be used to visualize
the ten triangular faces.

Figure 8 shows another representation of the 4-dimensional simplex S*. This time
the fifth vertex appears “inside” the tetrahedron S3. The highlighted tetrahedral facets
also appear to be “inside” S3.

FIGURE 8 The fifth vertex of S* is “inside” S3.

Hypercube

Let I; = Oe; be the line segment from the origin 0 to the standard basis vector e; in R”.
Then for k such that 1 < k < n, the vector sum?

Cr=L+L+-+1I

is called a k-dimensional hypercube.

To visualize the construction of C*, start with the simple cases. The hypercube C'
is the line segment I,. If C' is translated by e,, the convex hull of its initial and final
positions describes a square C2. (See Figure 9.) Translating C? by e creates the cube
C3. A similar translation of C* by the vector e, yields the 4-dimensional hypercube C*.

Again, this is hard to visualize, but Figure 10 shows a 2-dimensional projection
of C*. Each of the edges of C? is stretched into a square face of C*. And each of the
square faces of C? is stretched into a cubic face of C*. Figure 11 shows three facets
of C*. Part (a) highlights the cube that comes from the left square face of C3. Part (b)
shows the cube that comes from the front square face of C*. And part (c) emphasizes
the cube that comes from the top square face of C3.

2 The vector sum of two sets A and B is definedby A + B = {c:c=a+ b forsomea € Aand b € B}.



480 CHAPTER 8 The Geometry of Vector Spaces

c! c? c3
FIGURE 9 Constructing the cube C3.

FIGURE 10 C* projected onto R?.

(@) (b) (c)
FIGURE 11 Three of the cubic facets of C*.

Figure 12 shows another representation of C* in which the translated cube is placed
“inside” C?3. This makes it easier to visualize the cubic facets of C*, since there is less
distortion.

FIGURE 12 The translated image of
C3 is placed “inside” C? to obtain C*.

Altogether, the 4-dimensional cube C* has eight cubic faces. Two come from the
original and translated images of C?, and six come from the square faces of C? that are
stretched into cubes. The square 2-dimensional faces of C* come from the square faces
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of C3 and its translate, and the edges of C? that are stretched into squares. Thus there
are 2 x 6 4+ 12 = 24 square faces. To count the edges, take 2 times the number of edges
in C? and add the number of vertices in C3. This makes 2 x 12 + 8 = 32 edges in C*.
The vertices in C* all come from C?3 and its translate, so there are 2 x 8 = 16 vertices.

One of the truly remarkable results in the study of polytopes is the following for-
mula, first proved by Leonard Euler (1707-1783). It establishes a simple relationship
between the number of faces of different dimensions in a polytope. To simplify the
statement of the formula, let f;(P) denote the number of k-dimensional faces of an
n-dimensional polytope P .2

n—1
Euler’s formula: DD Py =1+ (=1

k=0
In particular, when n = 3,v —e + f = 2, where v, e, and f denote the number of
vertices, edges, and facets (respectively) of P.

PRACTICE PROBLEM

Find the minimal representation of the polytope P defined by the inequalities Ax < b

1 3 12
andx>0,whenA=|1 2 |[andb = 9
2 1 12

8.5 EXERCISES

1. Givenpointsp1=|:(l)],p2=[§]7aﬂdp3=[_;]inst 6. A= i ?},b:[ig]

let S = conv {p,, p,, p;}. For each linear functional f, find

the maximum value m of f on the set S, and find all points 3 18

x in § at which f(x) = m. 7. A= 1 Ll.b=[10

a. f(xi,x) =x1—x b. f(x1,x2) = x1 + X2 L4 L 28

c. f(x1,x) = =3x; +x, 2 17 8

0 ) | 8. A= 1 1|,b=]6

2. Givenpointspl:[_1],p2:|:1:|,andp3:[2:|inR2, L 2] L7

let S = conv {p,,p,,Pp;}. For each linear functional f, find 9. Let S = {(x,y) : x> + (y — 1)> < 1} U {(3,0)}. Is the ori-

the maximum value m of f on the set S, and find all points
x in § at which f(x) = m.

gin an extreme point of conv S? Is the origin a vertex of
conv S?

a. f(x;,x) =x +x

b. f(x1,x2) =x1 —x2

N 10. Find an example of a closed convex set S in R? such that its
c. Sl x)=-2x+x profile P is nonempty but conv P # S.
3. Repeat Exercise 1 where m is the minimum value of f on §

. . 11. Find an example of a bounded convex set S in R? such that
instead of the maximum value.

its profile P is nonempty but conv P # S.
4. Repeat Exercise 2 where m is the minimum value of f on §

instead of the maximum value. 12. a. Determine the number of k-faces of the 5-dimensional

simplex S° for k = 0,1, ...,4. Verify that your answer
satisfies Euler’s formula.
. Make a chart of the values of f;(S")forn =1,...,5and

k=0,1,...,4. Can you see a pattern? Guess a general
formula for f;.(S").

In Exercises 5-8, find the minimal representation of the polytope
defined by the inequalities Ax < b and x > 0. b

1 2 10
S A:[3 1]"’:[15]

3 A proof when n = 3 is presented in Steven R. Lay, Convex Sets and Their Applications (New York:
John Wiley & Sons, 1982; Mineola, NY: Dover Publications, 2007), p. 131.

SECOND REVISED PAGES



482 CHAPTER 8 The Geometry of Vector Spaces

13.

14.

15.

a. Determine the number of k-faces of the 5-dimensional
hypercube C® for k =0, 1,...,4. Verify that your an-
swer satisfies Euler’s formula.

b. Make achart of the values of f; (C")forn =1,...,5and

k=0,1,...,4. Can you see a pattern? Guess a general
formula for f;.(C").
Suppose vi,...,v, are linearly independent vectors in

R" (1 < k < n).Then the set X*¥ = conv {£v,,..
called a k-crosspolytope.
a. Sketch X' and X2

b. Determine the number of k-faces of the 3-dimensional
crosspolytope X3 for k = 0, 1,2. What is another name
for X3?

c. Determine the number of k-faces of the 4-dimensional
crosspolytope X* for k = 0, 1,2, 3. Verify that your an-
swer satisfies Euler’s formula.

d. Find a formula for f; (X"), the number of k-faces of X",
forO0 <k <n-1.

L, ve s

A k-pyramid P* is the convex hull of a (k — 1)-polytope
QO and a point x ¢ aff Q. Find a formula for each of the
following in terms of f;(Q),j =0,...,n—1.

a. The number of vertices of P": fo(P").
b. The number of k-faces of P": f; (P"),for1 <k <n —2.

c. The number of (n — 1)-dimensional facets of P":

Jo—1(P").

In Exercises 16 and 17, mark each statement True or False. Justify
each answer.

16.

a. A polytope is the convex hull of a finite set of points.

b. Let p be an extreme point of a convex set S.Ifu,ve S,
p €uv,and p # u,thenp = v.

c. If S is a nonempty convex subset of R”, then S is the
convex hull of its profile.

d. The 4-dimensional simplex S* has exactly five facets,
each of which is a 3-dimensional tetrahedron.

17.

18.

19.

20.

21.
22.

a. A cube in R? has exactly five facets.

b. A point p is an extreme point of a polytope P if and only
if p is a vertex of P.

c. If § is a nonempty compact convex set and a linear
functional attains its maximum at a point p, then p is an
extreme point of S.

d. A 2-dimensional polytope always has the same number
of vertices and edges.

Let v be an element of the convex set S. Prove that v is an
extreme point of S if and only if the set {x € S : x # v} is
convex.

If ceR and S is a set, define ¢S = {cx:x € S}. Let S
be a convex set and suppose ¢ > 0 and d > 0. Prove that
cS+dS=(+d)S.

Find an example to show that the convexity of .S is necessary
in Exercise 19.

If A and B are convex sets, prove that A + B is convex.

A polyhedron (3-polytope) is called regular if all its facets
are congruent regular polygons and all the angles at the
vertices are equal. Supply the details in the following proof
that there are only five regular polyhedra.

a. Suppose that a regular polyhedron has r facets, each of
which is a k-sided regular polygon, and that s edges
meet at each vertex. Letting v and e denote the numbers
of vertices and edges in the polyhedron, explain why
kr = 2e and sv = 2e.

1 1 1
b. Use Euler’s formula to show that — + — = — + —.
sk 2 e

c. Find all the integral solutions of the equation in part
(b) that satisfy the geometric constraints of the problem.
(How small can k and s be?)

For your information, the five regular polyhedra are the

tetrahedron (4, 6,4), the cube (8, 12, 6), the octahedron (6, 12,

8), the dodecahedron (20, 30, 12), and the icosahedron (12,

30,20). (The numbers in parentheses indicate the numbers of

vertices, edges, and faces, respectively.)

SOLUTION TO PRACTICE PROBLEM

The matrix inequality Ax < b yields the following system of inequalities:

(@) x14+3x <12
(b) x1 +2x2 <9
(©) 2x1 +x, <12

The condition x > 0, places the polytope in the first quadrant of the plane. One vertex
is (0, 0). The x-intercepts of the three lines (when x; = 0) are 12,9, and 6, so (6, 0) is
a vertex. The x,-intercepts of the three lines (when x; = 0) are 4,4.5, and 12, s0 (0, 4)

is a vertex.
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How do the three boundary lines intersect for positive values of x; and x,? The
intersection of (a) and (b) is at p,, = (3,3). Testing p,, in (c) gives 2(3) + 1(3) =
9 < 12, 50 p,, is in P. The intersection of (b) and (c) is at py, = (5,2). Testing py,
in (a) gives 1(5) + 3(2) = 11 < 12,50 p,, is in P. The intersection of (a) and (c) is at
P.. = (4.8,2.4). Testing p,. in (b) gives 1(4.8) +2(2.4) = 9.6 > 9.So p,. isnotin P.

Finally, the five vertices (extreme points) of the polytope are (0, 0), (6,0), (5,2)
(3,3),and (0, 4). These points form the minimal representation of P . This is displayed
graphically in Figure 13.

|/'\>)<

12

8_
5

FIGURE 13

8.6  CURVES AND SURFACES

For thousands of years, builders used long thin strips of wood to create the hull of a boat.
In more recent times, designers used long, flexible metal strips to lay out the surfaces of
cars and airplanes. Weights and pegs shaped the strips into smooth curves called natural
cubic splines. The curve between two successive control points (pegs or weights) has
a parametric representation using cubic polynomials. Unfortunately, such curves have
the property that moving one control point affects the shape of the entire curve, because
of physical forces that the pegs and weights exert on the strip. Design engineers had
long wanted local control of the curve—in which movement of one control point would
affect only a small portion of the curve. In 1962, a French automotive engineer, Pierre
Bézier, solved this problem by adding extra control points and using a class of curves
now called by his name.

Bézier Curves

The curves described below play an important role in computer graphics as well as
engineering. For example, they are used in Adobe Illustrator and Macromedia Freehand,
and in application programming languages such as OpenGL. These curves permit a
program to store exact information about curved segments and surfaces in a relatively
small number of control points. All graphics commands for the segments and surfaces
have only to be computed for the control points. The special structure of these curves
also speeds up other calculations in the “graphics pipeline” that creates the final display
on the viewing screen.

Exercises in Section 8.3 introduced quadratic Bézier curves and showed one method
for constructing Bézier curves of higher degree. The discussion here focuses on quadratic
and cubic Bézier curves, which are determined by three or four control points, denoted
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by Po» P P>, and p;. These points can be in R? or R3, or they can be represented by
homogeneous forms in R? or R*. The standard parametric descriptions of these curves,
forO <t <1,are

w(t) = (1—1)’p, + 2t(1 —1)p, + 1°p, (1
x(1) = (1 —1)%py + 3t(1 —1)’p, + 3t>(1 — t)p, + °ps 2)

Figure 1 shows two typical curves. Usually, the curves pass through only the initial and
terminal control points, but a Bézier curve is always in the convex hull of its control
points. (See Exercises 21-24 in Section 8.3.)

P P P P

Py Py P3

FIGURE 1 Quadratic and cubic Bézier curves.

Bézier curves are useful in computer graphics because their essential properties are
preserved under the action of linear transformations and translations. For instance, if
A is a matrix of appropriate size, then from the linearity of matrix multiplication, for
0<t<1,

AX(t) = Al(1 = 1)°py + 31(1 = 1)°py + 3t*(1 = 1)p, + £°p3]
= (1—1)*Ap, + 3t(1 —t)*Ap, + 3t>(1 — t)Ap, + 1> Ap,
The new control points are Ap,, ..., Aps. Translations of Bézier curves are considered
in Exercise 1.
The curves in Figure 1 suggest that the control points determine the tangent lines
to the curves at the initial and terminal control points. Recall from calculus that for any
parametric curve, say y(¢), the direction of the tangent line to the curve at a point y(¢)

is given by the derivative y'(¢), called the tangent vector of the curve. (This derivative
is computed entry by entry.)

EXAMPLE 1 Determine how the tangent vector of the quadratic Bézier curve w(t)
is related to the control points of the curve,at? = Oand ¢t = 1.
SOLUTION Write the weights in equation (1) as simple polynomials
w(t) = (1 =2t +*)py + (21 —2%)p, + 1°p,
Then, because differentiation is a linear transformation on functions,
W (1) = (=24 20)p, + (2—41)p, + 21p,

So

w'(0) = —2p, + 2p; = 2(p; — Po)

w'(1) = —2p; +2p, = 2(p, — Py)

The tangent vector at p,, for instance, points from p, to p;, but it is twice as long as the
segment from p, to p,. Notice that w'(0) =0 when p, =p,. In this case,
w(t) = (1 —t?)p, + t?p,, and the graph of w(¢) is the line segment from p,
to p,. ]



8.6 Curves and Surfaces 485

Connecting Two Bézier Curves

Two basic Bézier curves can be joined end to end, with the terminal point of the first
curve x(¢) being the initial point p, of the second curve y(¢). The combined curve is
said to have G° geometric continuity (at p,) because the two segments join at p,. If the
tangent line to curve 1 at p, has a different direction than the tangent line to curve 2,
then a “corner,” or abrupt change of direction, may be apparent at p,. See Figure 2.

p3 / P4

P,

P9

Py

FIGURE 2 G continuity at p,.

To avoid a sharp bend, it usually suffices to adjust the curves to have what is called
G' geometric continuity, where both tangent vectors at p, point in the same direction.
That is, the derivatives x’(1) and y’(0) point in the same direction, even though their
magnitudes may be different. When the tangent vectors are actually equal at p,, the
tangent vector is continuous at p,, and the combined curve is said to have C'! continuity,
or C' parametric continuity. Figure 3 shows G' continuity in (a) and C' continuity
in (b).

24+ ! P, 3 ! P, 3
P, P, P,
p
0 ! ! 4 I ! ! |
0 2 4 6 8 10 12 14
(@) (b)

FIGURE 3 (a) G' continuity and (b) C' continuity.

EXAMPLE 2 Letx(?) and y(¢) determine two quadratic Bézier curves, with control
points {py. P, P>} and {p,, P3, P4}, respectively. The curves are joined at p, = x(1) =
y(0).

a. Suppose the combined curve has G'! continuity (at p,). What algebraic restriction
does this condition impose on the control points? Express this restriction in geomet-
ric language.

b. Repeat part (a) for C' continuity.

SOLUTION

a. From Example 1,x'(1) = 2(p, — p;)- Also, using the control points for y(¢) in place

of w(t), Example 1 shows that y'(0) = 2(p; — p,). G! continuity means that
y'(0) = kx/(1) for some positive constant k. Equivalently,

pPs— P, =k(p,—py), withk >0 3)
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Geometrically, (3) implies that p, lies on the line segment from p; to p;. To
prove this, let r = (k + 1)~', and note that 0 <t < 1. Solve for k to obtain
k = (1 —t)/t. When this expression is used for k in (3), a rearrangement shows
that p, = (1 — ¢)p,; + tp;, which verifies the assertion about p,.

b. C' continuity means that y'(0) =x'(1). Thus 2(p; —p,) = 2(p, — p;), SO
P; — P> = P> — P;.and p, = (p; + p3)/2. Geometrically, p, is the midpoint of the
line segment from p, to p;. See Figure 3. [ |

Figure 4 shows C' continuity for two cubic Bézier curves. Notice how the point
joining the two segments lies in the middle of the line segment between the adjacent
control points.

Pg

FIGURE 4 Two cubic Bézier curves.

Two curves have C? (parametric) continuity when they have C' continuity and the
second derivatives x”(1) and y”(0) are equal. This is possible for cubic Bézier curves,
but it severely limits the positions of the control points. Another class of cubic curves,
called B-splines, always have C? continuity because each pair of curves share three
control points rather than one. Graphics figures using B-splines have more control points
and consequently require more computations. Some exercises for this section examine
these curves.

Surprisingly, if x(¢) and y(¢) join at ps, the apparent smoothness of the curve at
p; is usually the same for both G' continuity and C' continuity. This is because the
magnitude of x'(¢) is not related to the physical shape of the curve. The magnitude
reflects only the mathematical parameterization of the curve. For instance, if a new
vector function z(¢) equals x(2¢), then the point z(¢) traverses the curve from p, to
p; twice as fast as the original version, because 2¢ reaches 1 when ¢ is .5. But, by the
chain rule of calculus, z'(r) = 2-x'(21), so the tangent vector to z(¢) at ps is twice the
tangent vector to x(7) at p;.

In practice, many simple Bézier curves are joined to create graphics objects. Type-
setting programs provide one important application, because many letters in a type font
involve curved segments. Each letter in a PostScript® font, for example, is stored as a
set of control points, along with information on how to construct the “outline” of the
letter using line segments and Bézier curves. Enlarging such a letter basically requires
multiplying the coordinates of each control point by one constant scale factor. Once the
outline of the letter has been computed, the appropriate solid parts of the letter are filled
in. Figure 5 illustrates this for a character in a PostScript font. Note the control points.
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FIGURE 5 A PostScript character.

Matrix Equations for Bézier Curves

Since a Bézier curve is a linear combination of control points using polynomials as
weights, the formula for x(¢) may be written as

[ (1—1)?
3t(1 —1)?
X(f)z[l’o P P P3] 315(1_3)
/3
1 -3t +32 13
3t — 617 + 313
=[P0 P P2 Pa] 312 343
/3
1 -3 3 —1 1
0 3 -6 3 t
=[P0 P P2 ps] 0 0 3 -3 2
[0 0 0 1 13

The matrix whose columns are the four control points is called a geometry matrix, G.
The 4 x 4 matrix of polynomial coefficients is the Bézier basis matrix, M. If u(?) is
the column vector of powers of 7, then the Bézier curve is given by

x(1) = GMgu(t) )

Other parametric cubic curves in computer graphics are written in this form, too. For
instance, if the entries in the matrix Mp are changed appropriately, the resulting curves
are B-splines. They are “smoother” than Bézier curves, but they do not pass through any
of the control points. A Hermite cubic curve arises when the matrix Mp is replaced by
a Hermite basis matrix. In this case, the columns of the geometry matrix consist of the
starting and ending points of the curves and the tangent vectors to the curves at those
points.!

The Bézier curve in equation (4) can also be “factored” in another way, to be used
in the discussion of Bézier surfaces. For convenience later, the parameter ¢ is replaced

! The term basis matrix comes from the rows of the matrix that list the coefficients of the blending poly-
nomials used to define the curve. For a cubic Bézier curve, the four polynomials are (1 — )3, 37(1 — ¢)?,
3t2(1 —t),and ¢. They form a basis for the space P of polynomials of degree 3 or less. Each entry in the
vector x(?) is a linear combination of these polynomials. The weights come from the rows of the geometry
matrix G in (4).
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by a parameter s:

Po I 0 0 O0]]pg
_ TaT| P1 | _ 2 373 3 0 0 P
x(s) = u(s)" My o, =[1 s s* §°] 326 3 0||ps
Ps -1 3 -3 1 Ps
Po
=[(1—s)3 35(1 —s)> 3s*(1—ys) s3] gl (5)
2
Ps3

This formula is not quite the same as the transpose of the product on the right of
(4), because x(s) and the control points appear in (5) without transpose symbols. The
matrix of control points in (5) is called a geometry vector. This should be viewed as a
4 x 1 block (partitioned) matrix whose entries are column vectors. The matrix to the left
of the geometry vector, in the second part of (5), can be viewed as a block matrix, too,
with a scalar in each block. The partitioned matrix multiplication makes sense, because
each (vector) entry in the geometry vector can be left-multiplied by a scalar as well as
by a matrix. Thus, the column vector x(s) is represented by (5).

Bézier Surfaces

A 3D bicubic surface patch can be constructed from a set of four Bézier curves. Consider
the four geometry matrices

[Pu P12 Piz Pu ]
[le P2 P2z P ]
[P31 P32 P33 Pi ]
[P41 Py P43 Py ]

and recall from equation (4) that a Bézier curve is produced when any one of these
matrices is multiplied on the right by the following vector of weights:

(1—1)}

2

Mpu(®) = 3;21 _13)
[3

Let G be the block (partitioned) 4 x 4 matrix whose entries are the control points p;;
displayed above. Then the following product is a block 4 x 1 matrix, and each entry is
a Bézier curve:

Pi P2 P13z Pu (1- f)32
Pi P Px Pu 3t(1—1)
GMpu(t) =
pu(t) P31 P2 Pz Pu 312(13— 1)
Psi Pso Ps3 Pu t

In fact,

(1- f)ipn +3e(1 - f)ipn + 312(1 —1)p; + fzpm
(1 =1)°pyy + 31(1 = 1)"pyy + 31°(1 = 1)py3 + 1°Poy

Mpu(r) = :
GMpu(®) (1 —1)°p3; +31(1 —1)?p3y + 3°(1 — 1)py; + 17pyy
(1 —1)°py; +31(1 —1)*pyy + 33(1 —1)py3 + °pyy
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Now fix t. Then GMpu(z) is a column vector that can be used as a geometry vector
in equation (5) for a Bézier curve in another variable s. This observation produces the
Bézier bicubic surface:

x(s,t) = u(s)" M GMpu(t), where0 <s,t <1 (6)

The formula for x(s, ) is a linear combination of the sixteen control points. If one
imagines that these control points are arranged in a fairly uniform rectangular array, as
in Figure 6, then the Bézier surface is controlled by a web of eight Bézier curves, four
in the “s-direction” and four in the “z-direction.” The surface actually passes through
the four control points at its “corners.” When it is in the middle of a larger surface, the
sixteen-point surface shares its twelve boundary control points with its neighbors.

FIGURE 6 Sixteen control points for a Bézier
bicubic surface patch.

Approximations to Curves and Surfaces

In CAD programs and in programs used to create realistic computer games, the designer
often works at a graphics workstation to compose a “scene” involving various geometric
structures. This process requires interaction between the designer and the geometric ob-
jects. Each slight repositioning of an object requires new mathematical computations by
the graphics program. Bézier curves and surfaces can be useful in this process because
they involve fewer control points than objects approximated by many polygons. This
dramatically reduces the computation time and speeds up the designer’s work.

After the scene composition, however, the final image preparation has different
computational demands that are more easily met by objects consisting of flat surfaces
and straight edges, such as polyhedra. The designer needs to render the scene, by in-
troducing light sources, adding color and texture to surfaces, and simulating reflections
from the surfaces.

Computing the direction of a reflected light at a point p on a surface, for instance,
requires knowing the directions of both the incoming light and the surface normal—
the vector perpendicular to the tangent plane at p. Computing such normal vectors is
much easier on a surface composed of, say, tiny flat polygons than on a curved surface
whose normal vector changes continuously as p moves. If p;, p,, and p; are adjacent
vertices of a flat polygon, then the surface normal is just plus or minus the cross product
(P> — P1) X (P, — P3)- When the polygon is small, only one normal vector is needed for
rendering the entire polygon. Also, two widely used shading routines, Gouraud shading
and Phong shading, both require a surface to be defined by polygons.

As a result of these needs for flat surfaces, the Bézier curves and surfaces from the
scene composition stage now are usually approximated by straight line segments and
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polyhedral surfaces. The basic idea for approximating a Bézier curve or surface is to
divide the curve or surface into smaller pieces, with more and more control points.

Recursive Subdivision of Bézier Curves and Surfaces

Figure 7 shows the four control points py, . . ., p; for a Bézier curve, along with control
points for two new curves, each coinciding with half of the original curve. The “left”
curve begins at q, = p, and ends at q;, at the midpoint of the original curve. The “right”
curve begins at rp = 3 and ends at r; = p;.

Py P,

Pp=49, P;=Tr;

FIGURE 7 Subdivision of a Bézier curve.

Figure 8 shows how the new control points enclose regions that are “thinner” than
the region enclosed by the original control points. As the distances between the control
points decrease, the control points of each curve segment also move closer to a line
segment. This variation-diminishing property of Bézier curves depends on the fact that
a Bézier curve always lies in the convex hull of the control points.

Py P,

Py=4g P P3=T;

FIGURE 8 Convex hulls of the control points.

The new control points are related to the original control points by simple formulas.
Of course, q, = p, and r3 = p;. The midpoint of the original curve x(¢) occurs at X(.5)
when x(#) has the standard parameterization,

x(t) = (1 =3t +3t> = °)py + (3t — 61> +3t%)p, + 3> = 37)p, + 'p;  (7)

for 0 <t < 1. Thus, the new control points ¢z and r( are given by
q; =19 =x(.5) = %(Po +3p; + 3p, + p3) (8
The formulas for the remaining “interior” control points are also simple, but the deriva-
tion of the formulas requires some work involving the tangent vectors of the curves. By
definition, the tangent vector to a parameterized curve x(¢) is the derivative x'(¢). This
vector shows the direction of the line tangent to the curve at x(¢). For the Bézier curve
in (7),
X'(t) = (=3 + 61 —3t>)p, + (3 — 12t 4+ 9t*)p, + (61 — 9t*)p, + 3t°p,

for 0 <t < 1. In particular,

X'(0) = 3(p; —py) and X(1) = 3(ps — p2) 9
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Geometrically, p, is on the line tangent to the curve at p,, and p, is on the line tangent
to the curve at p5. See Figure 8. Also, from x'(¢), compute

X'(.5) = %(—Po — Pt P2t P3) (10)
Let y(¢) be the Bézier curve determined by qq, . .., (3, and let z(¢) be the Bézier curve
determined by ry, ..., r3. Since y(¢) traverses the same path as x(¢) but only gets to

x(.5) as ¢ goes from 0 to 1, y(t) = x(.5¢) for 0 < ¢ < 1. Similarly, since z(¢) starts at
x(.5) whent = 0,z(t) = x(.5 + .5¢) for 0 < ¢ < 1. By the chain rule for derivatives,

y(t) = .5%(5t) and Z'(t) = .5x/(54.5t) for0<t<1 (11)

From (9) with y’(0) in place of x'(0), from (11) with = 0, and from (9), the control
points for y(¢) satisfy

3(q; — qp) = ¥'(0) = .5¥'(0) = 3(p; — Py) (12)
From (9) with y’(1) in place of x'(1), from (11) with ¢ = 1, and from (10),
3(q; —qp) =y (1) = .5x'(.5) = %(—Po —Pi t P2t P3) (13)

Equations (8), (9), (10), (12),and (13) can be solved to produce the formulas for q, . . .,
q; shown in Exercise 13. Geometrically, the formulas are displayed in Figure 9. The
interior control points ¢, and r, are the midpoints, respectively, of the segment from p,,
to p, and the segment from p, to p;. When the midpoint of the segment from p, to p,
is connected to q;, the resulting line segment has q, in the middle!

1
5 (P +py)
p] pZ

4p=P¢* *P;=T;

FIGURE 9 Geometric structure of new control points.

This completes one step of the subdivision process. The “recursion” begins, and
both new curves are subdivided. The recursion continues to a depth at which all curves
are sufficiently straight. Alternatively, at each step the recursion can be “adaptive” and
not subdivide one of the two new curves if that curve is sufficiently straight. Once the
subdivision completely stops, the endpoints of each curve are joined by line segments,
and the scene is ready for the next step in the final image preparation.

A Bézier bicubic surface has the same variation-diminishing property as the Bézier
curves that make up each cross-section of the surface, so the process described above
can be applied in each cross-section. With the details omitted, here is the basic strategy.
Consider the four “parallel” Bézier curves whose parameter is s, and apply the subdi-
vision process to each of them. This produces four sets of eight control points; each set
determines a curve as s varies from O to 1. As ¢ varies, however, there are eight curves,
each with four control points. Apply the subdivision process to each of these sets of
four points, creating a total of 64 control points. Adaptive recursion is possible in this
setting, too, but there are some subtleties involved .2

2See Foley, van Dam, Feiner, and Hughes, Computer Graphics— Principles and Practice,2nd Ed. (Boston:
Addison-Wesley, 1996), pp. 527-528.
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PRACTICE PROBLEMS

A spline usually refers to a curve that passes through specified points. A B-spline,
however, usually does not pass through its control points. A single segment has the

parametric form
x(t) = H[(1 —1)’py + (317 — 617 + 4)p, (14)
+ (=31 + 3t + 3t + 1)p, + £°ps]

for0 <t < 1, where py, p;, P, and p; are the control points. When ¢ varies fromOto 1,
x(?) creates a short curve that lies close to p,p,. Basic algebra shows that the B-spline
formula can also be written as

x(1) = g[(1 =1)’py + Bt(1 = 1)* =3t + 4)p,
+ @2 (1 —1) + 3t + 1)p, + 1°ps]
This shows the similarity with the Bézier curve. Except for the 1/6 factor at the front,
the p, and p; terms are the same. The p; component has been increased by —3¢ 4 4
and the p, component has been increased by 37 + 1. These components move the curve
closer to p;p, than the Bézier curve. The 1/6 factor is necessary to keep the sum of the

coefficients equal to 1. Figure 10 compares a B-spline with a Bézier curve that has the
same control points.

R

FIGURE 10 A B-spline segment and a Bézier curve.

5)

1. Show that the B-spline does not begin at p,, but x(0) is in conv {p,, p;, P, }. Assum-
ing that p,, p,, and p, are affinely independent, find the affine coordinates of x(0)
with respect to {py, P;. P2} -

2. Show that the B-spline does not end at p;, but x(1) is in conv {p,, p,, P3}- Assuming
that p,, p,, and p; are affinely independent, find the affine coordinates of x(1) with
respect to {p;, P, P3}-

8.6 EXERCISES

1. Suppose a Bézier curve is translated to x(¢) + b. That is, for a. Show that for 0 < ¢ < 1,x(¢) is in the convex hull of the
0 <t <1, the new curve is control points.

b. Suppose that a B-spline curve x(¢) is translated to
x(¢) + b (as in Exercise 1). Show that this new curve is
again a B-spline.

x(t) = (1 —1)*py + 31(1 —1)’p,
+3t2(1—t)p, +°p; + b

Show that this new curve is again a Bézier curve. [Hint:

Where are the new control points?] 3. Letx(7) be a cubic Bézier curve determined by points p,, p;,

p,. and p;.

2. The parametric vector form of a B-spline curve was defined a. Compute the fangent vector X'(t). Determine how x'(0)
in the Practice Problems as and x'(1) are related to the control points, and give ge-
x(t) = é[(l _ t)3p0 + (3t(1 — t)2 — 3t + 4)p, ometric descriptions of the directions of these tangent

G = 1)+ 3t + Dp, + £p for0 <7 <1, vectors. Is it possible to have x'(1) = 0?
2 3
b. Compute the second derivative x”(¢) and determine how

where p,, p;, P,, and p; are the control points. x(0) and x” (1) are related to the control points. Draw a



figure based on Figure 10, and construct a line segment
that points in the direction of x”(0). [Hinz: Use p, as the
origin of the coordinate system.]

. Letx(¢) be the B-spline in Exercise 2, with control points p,,

P, P,, and ps.

a. Compute the tangent vector x'(¢) and determine how
the derivatives x’(0) and x’(1) are related to the control
points. Give geometric descriptions of the directions of
these tangent vectors. Explore what happens when both
x'(0) and x'(1) equal 0. Justify your assertions.

b. Compute the second derivative x”(¢) and determine how
x”(0) and x” (1) are related to the control points. Draw a
figure based on Figure 10, and construct a line segment
that points in the direction of x”(1). [Hinz: Use p, as the
origin of the coordinate system.]

. Let x(#) and y(#) be cubic Bézier curves with control points
{Po: P1. P2, P3} and {p;, Py, Ps. Pg}, respectively, so that x(7)
and y(¢) are joined at p;. The following questions refer to
the curve consisting of x(¢) followed by y (). For simplicity,
assume that the curve is in R2.

a. What condition on the control points will guarantee that
the curve has C' continuity at p;? Justify your answer.

b. What happens when x'(1) and y’(0) are both the zero
vector?

. A B-spline is built out of B-spline segments, described in
Exercise 2. Let py. . .., p, be control points. For 0 <t <1,
let x(¢) and y(7) be determined by the geometry matrices
[P0 Pr P, P3] and [p; p, P; P, respectively.
Notice how the two segments share three control points.
The two segments do not overlap, however—they join at a
common endpoint, close to p,.

a. Show that the combined curve has G° continuity —that is,
x(1) = y(0).

b. Show that the curve has C' continuity at the join point,
x(1). That is, show that x'(1) = y’(0).

. Letx(¢) and y(¢) be Bézier curves from Exercise 5, and sup-
pose the combined curve has C? continuity (which includes
C'! continuity) at p,. Set x”(1) = y”(0) and show that p; is
completely determined by p,, p,, and p;. Thus, the points
Po,---,P; and the C 2 condition determine all but one of the
control points for y(z).

. Let x(¢r) and y(r) be segments of a B-spline as in
Exercise 6. Show that the curve has C? continuity (as well
as C! continuity) at x(1). That is, show that x”/ (1) = y”(0).
This higher-order continuity is desirable in CAD applica-
tions such as automotive body design, since the curves and
surfaces appear much smoother. However, B-splines require
three times the computation of Bézier curves, for curves
of comparable length. For surfaces, B-splines require nine
times the computation of Bézier surfaces. Programmers often
choose Bézier surfaces for applications (such as an airplane
cockpit simulator) that require real-time rendering.

9.

10.
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A quartic Bézier curve is determined by five control points,
Po: Py» P, P3, and py:

x(1) = (1 =1)*py + 41(1 —1)’p; + 617(1 —1)°p,
+ 431 —1)p; +1t*p, for0<t<1
Construct the quartic basis matrix Mp for x(¢).

The “B” in B-spline refers to the fact that a segment x(¢) may
be written in terms of a basis matrix, My, in a form similar
to a Bézier curve. That is,

x(t) = GMsu(t) for0<t <1

where G is the geometry matrix [p, p; P, P;]andu(?)
is the column vector (1,,¢2,¢). In a uniform B-spline, each
segment uses the same basis matrix, but the geometry matrix
changes. Construct the basis matrix My for x(¢).

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11.

12.

a. The cubic Bézier curve is based on four control points.

b. Given a quadratic Bézier curve x(¢) with control points
Po, P, and p,, the directed line segment p, — p, (from
P, to p,) is the tangent vector to the curve at p,,.

c. When two quadratic Bézier curves with control points
{Po: P, P>} and {p,, p5, P, } are joined at p,, the combined
Bézier curve will have C! continuity at p, if p, is the
midpoint of the line segment between p, and p;.

a. The essential properties of Bézier curves are preserved
under the action of linear transformations, but not
translations.

b. When two Bézier curves x(¢) and y(¢) are joined at the
point where x(1) = y(0), the combined curve has G°
continuity at that point.

c. The Bézier basis matrix is a matrix whose columns are
the control points of the curve.

Exercises 13—15 concern the subdivision of a Bézier curve shown
in Figure 7. Let x(#) be the Bézier curve, with control points

Po, - -
as in the text, with control points qq,...

,P3,and let y(z) and z(¢) be the subdividing Bézier curves
,q; and ro,...,r3,

respectively.

13.

14.

a. Use equation (12) to show that q, is the midpoint of the
segment from p, to p;.

b. Use equation (13) to show that
8q, = 8q; +py + P, — P, —Ps

c. Use part (b), equation (8), and part (a) to show that q, is
the midpoint of the segment from q; to the midpoint of the
segment from p, to p,. Thatis,q, = %[qI + %(pl +p,)l

a. Justify each equal sign:

3(r; —12) = 2/(1) = .5x'(1) = 5(p; — Po)-
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15.

16.

b. Show thatr; is the midpoint of the segment from p, to p;.

c. Justify each equal sign: 3(r; — rp) = z/(0) = .5x(.5).

d. Use part (c) to show that 8r; = —p, —p, +p, +p; +
8ry.

e. Use part (d), equation (8), and part (a) to show that r; is

the midpoint of the segment from r, to the midpoint of the
segment from p, to p,. Thatis,r; = %[rz + %(p] +p,)l

Sometimes only one half of a Bézier curve needs further
subdividing. For example, subdivision of the “left” side is
accomplished with parts (a) and (c) of Exercise 13 and
equation (8). When both halves of the curve x(¢) are divided,
it is possible to organize calculations efficiently to calculate
both left and right control points concurrently, without using
equation (8) directly.

a. Show that the tangent vectors y’(1) and z'(0) are equal.

b. Use part (a) to show that q; (which equals ry) is the
midpoint of the segment from q, to r;.

c. Using part (b) and the results of Exercises 13 and 14, write
an algorithm that computes the control points for both
y(¢) and z(¢) in an efficient manner. The only operations
needed are sums and division by 2.

Explain why a cubic Bézier curve is completely determined
by x(0), x'(0), x(1), and x'(1).

17.

18.

TrueType® fonts, created by Apple Computer and Adobe
Systems, use quadratic Bézier curves, while PostScript®
fonts, created by Microsoft, use cubic Bézier curves. The
cubic curves provide more flexibility for typeface design,
but it is important to Microsoft that every typeface using
quadratic curves can be transformed into one that uses cubic
curves. Suppose that w(¢) is a quadratic curve, with control
points p,, p;, and p,.

a. Find control points ry, ry, I, and r3 such that the cubic
Bézier curve x(¢) with these control points has the prop-
erty that x(#) and w(#) have the same initial and terminal
points and the same tangent vectors at f = 0 and t = 1.
(See Exercise 16.)

b. Show that if x(#) is constructed as in part (a), then
x(t) =w(t)for0 <t <1.
Use partitioned matrix multiplication to compute the follow-

ing matrix product, which appears in the alternative formula
(5) for a Bézier curve:

1 0 0 07[ps
-3 3 0 0f|p

3 -6 3 0||p,
-1 3 =3 1]|ps

SOLUTIONS TO PRACTICE PROBLEMS

1. From equation (14) with ¢ = 0,x(0) # p, because

x(0) = £[po + 4Py + P2l = $Po + 3P + £P2

The coefficients are nonnegative and sum to 1, so x(0) is in conv {p,, p;, p,}, and
the affine coordinates with respect to {p,, p;, p,} are (l 2 l).

6°3°6

2. From equation (14) with t = 1, x(1) # p; because

x(1) = ¢[py +4p> + p3] = ¢p1 + 3P2 + £Ds

The coefficients are nonnegative and sum to 1, so x(1) is in conv {p,, p,, p;}, and
the affine coordinates with respect to {p;, p,. ps} are (3. 3. ¢).
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