- 7. *Hint:* If $A = R^T R$, where R is invertible, then A is positive definite, by Exercise 25 in Section 7.2. Conversely, suppose that A is positive definite. Then by Exercise 26 in Section 7.2, $A = B^T B$ for some positive definite matrix B. Explain why B admits a QR factorization, and use it to create the Cholesky factorization of A.
- **9.** If A is $m \times n$ and \mathbf{x} is in \mathbb{R}^n , then $\mathbf{x}^T A^T A \mathbf{x} = (A \mathbf{x})^T (A \mathbf{x}) = \|A \mathbf{x}\|^2 \ge 0$. Thus $A^T A$ is positive semidefinite. By Exercise 22 in Section 6.5, rank $A^T A = \operatorname{rank} A$.
- **11.** *Hint:* Write an SVD of A in the form $A = U\Sigma V^T = PQ$, where $P = U\Sigma U^T$ and $Q = UV^T$. Show that P is symmetric and has the same eigenvalues as Σ . Explain why Q is an orthogonal matrix.
- 13. a. If $\mathbf{b} = A\mathbf{x}$, then $\mathbf{x}^+ = A^+\mathbf{b} = A^+A\mathbf{x}$. By Exercise 12(a), \mathbf{x}^+ is the orthogonal projection of \mathbf{x} onto Row A.
 - **b.** From (a) and then Exercise 12(c), $A\mathbf{x}^+ = A(A^+A\mathbf{x}) = (AA^+A)\mathbf{x} = A\mathbf{x} = \mathbf{b}$.
 - **c.** Since \mathbf{x}^+ is the orthogonal projection onto Row A, the Pythagorean Theorem shows that $\|\mathbf{u}\|^2 = \|\mathbf{x}^+\|^2 + \|\mathbf{u} \mathbf{x}^+\|^2$. Part (c) follows immediately.

15. [M]
$$A^{+} = \frac{1}{40} \cdot \begin{bmatrix} -2 & -14 & 13 & 13 \\ -2 & -14 & 13 & 13 \\ -2 & 6 & -7 & -7 \\ 2 & -6 & 7 & 7 \\ 4 & -12 & -6 & -6 \end{bmatrix}, \hat{\mathbf{x}} = \begin{bmatrix} .7 \\ .7 \\ -.8 \\ .8 \\ .6 \end{bmatrix}$$

The reduced echelon form of $\begin{bmatrix} A \\ \mathbf{x}^T \end{bmatrix}$ is the same as the

reduced echelon form of A, except for an extra row of zeros. So adding scalar multiples of the rows of A to \mathbf{x}^T can produce the zero vector, which shows that \mathbf{x}^T is in Row A.

Basis for Nul A:
$$\begin{bmatrix} -1\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix}$$

Chapter 8

Section 8.1, page 444

- 1. Some possible answers: $\mathbf{y} = 2\mathbf{v}_1 1.5\mathbf{v}_2 + .5\mathbf{v}_3$, $\mathbf{y} = 2\mathbf{v}_1 2\mathbf{v}_3 + \mathbf{v}_4$, $\mathbf{y} = 2\mathbf{v}_1 + 3\mathbf{v}_2 7\mathbf{v}_3 + 3\mathbf{v}_4$
- 3. $\mathbf{y} = -3\mathbf{v}_1 + 2\mathbf{v}_2 + 2\mathbf{v}_3$. The weights sum to 1, so this is an affine sum.
- 5. **a.** $\mathbf{p}_1 = 3\mathbf{b}_1 \mathbf{b}_2 \mathbf{b}_3 \in \text{aff } S \text{ since the coefficients sum}$
 - **b.** $\mathbf{p}_2 = 2\mathbf{b}_1 + 0\mathbf{b}_2 + \mathbf{b}_3 \notin \text{aff } S \text{ since the coefficients do not sum to 1.}$
 - **c.** $\mathbf{p}_3 = -\mathbf{b}_1 + 2\mathbf{b}_2 + 0\mathbf{b}_3 \in \text{aff } S \text{ since the coefficients sum to 1.}$

- 7. **a.** $\mathbf{p}_1 \in \operatorname{Span} S$, but $\mathbf{p}_1 \notin \operatorname{aff} S$
 - **b.** $\mathbf{p}_2 \in \operatorname{Span} S$, and $\mathbf{p}_2 \in \operatorname{aff} S$
 - **c.** $\mathbf{p}_3 \notin \operatorname{Span} S$, so $\mathbf{p}_3 \notin \operatorname{aff} S$
- **9.** $\mathbf{v}_1 = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Other answers are possible.
- 11. See the Study Guide.
- **13.** Span $\{\mathbf{v}_2 \mathbf{v}_1, \mathbf{v}_3 \mathbf{v}_1\}$ is a plane if and only if $\{\mathbf{v}_2 \mathbf{v}_1, \mathbf{v}_3 \mathbf{v}_1\}$ is linearly independent. Suppose c_2 and c_3 satisfy $c_2(\mathbf{v}_2 \mathbf{v}_1) + c_3(\mathbf{v}_3 \mathbf{v}_1) = \mathbf{0}$. Show that this implies $c_2 = c_3 = 0$.
- **15.** Let $S = \{\mathbf{x} : A\mathbf{x} = \mathbf{b}\}$. To show that S is affine, it suffices to show that S is a flat, by Theorem 3. Let $W = \{\mathbf{x} : A\mathbf{x} = \mathbf{0}\}$. Then W is a subspace of \mathbb{R}^n , by Theorem 2 in Section 4.2 (or Theorem 12 in Section 2.8). Since $S = W + \mathbf{p}$, where \mathbf{p} satisfies $A\mathbf{p} = \mathbf{b}$, by Theorem 6 in Section 1.5, S is a translate of W, and hence S is a flat.
- 17. A suitable set consists of any three vectors that are not collinear and have 5 as their third entry. If 5 is their third entry, they lie in the plane z = 5. If the vectors are not collinear, their affine hull cannot be a line, so it must be the plane.
- 19. If $\mathbf{p}, \mathbf{q} \in f(S)$, then there exist $\mathbf{r}, \mathbf{s} \in S$ such that $f(\mathbf{r}) = \mathbf{p}$ and $f(\mathbf{s}) = \mathbf{q}$. Given any $t \in \mathbb{R}$, we must show that $\mathbf{z} = (1 t)\mathbf{p} + t\mathbf{q}$ is in f(S). Now use definitions of \mathbf{p} and \mathbf{q} , and the fact that f is linear. The complete proof is presented in the *Study Guide*.
- **21.** Since *B* is affine, Theorem 2 implies that *B* contains all affine combinations of points of *B*. Hence *B* contains all affine combinations of points of *A*. That is, aff $A \subset B$.
- **23.** Since $A \subset (A \cup B)$, it follows from Exercise 22 that aff $A \subset \text{aff } (A \cup B)$. Similarly, aff $B \subset \text{aff } (A \cup B)$, so $[\text{aff } A \cup \text{aff } B] \subset \text{aff } (A \cup B)$.
- **25.** To show that $D \subset E \cap F$, show that $D \subset E$ and $D \subset F$. The complete proof is presented in the *Study Guide*.

Section 8.2, page 454

- 1. Affinely dependent and $2\mathbf{v}_1 + \mathbf{v}_2 3\mathbf{v}_3 = \mathbf{0}$
- 3. The set is affinely independent. If the points are called \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 , then $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is a basis for \mathbb{R}^3 and $\mathbf{v}_4=16\mathbf{v}_1+5\mathbf{v}_2-3\mathbf{v}_3$, but the weights in the linear combination do not sum to 1.
- 5. $-4\mathbf{v}_1 + 5\mathbf{v}_2 4\mathbf{v}_3 + 3\mathbf{v}_4 = \mathbf{0}$
- 7. The barycentric coordinates are (-2, 4, -1).
- 9. See the Study Guide.
- 11. When a set of five points is translated by subtracting, say, the first point, the new set of four points must be linearly dependent, by Theorem 8 in Section 1.7, because the four points are in \mathbb{R}^3 . By Theorem 5, the original set of five points is affinely dependent.

- 13. If $\{\mathbf{v}_1, \mathbf{v}_2\}$ is affinely dependent, then there exist c_1 and c_2 , not both zero, such that $c_1 + c_2 = 0$ and $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 = \mathbf{0}$. Show that this implies $\mathbf{v}_1 = \mathbf{v}_2$. For the converse, suppose $\mathbf{v}_1 = \mathbf{v}_2$ and select specific c_1 and c_2 that show their affine dependence. The details are in the *Study Guide*.
- **15. a.** The vectors $\mathbf{v}_2 \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v}_3 \mathbf{v}_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ are not multiples and hence are linearly independent. By Theorem 5, S is affinely independent.
 - **b.** $\mathbf{p}_1 \leftrightarrow \left(-\frac{6}{8}, \frac{9}{8}, \frac{5}{8}\right), \mathbf{p}_2 \leftrightarrow \left(0, \frac{1}{2}, \frac{1}{2}\right), \mathbf{p}_3 \leftrightarrow \left(\frac{14}{8}, -\frac{5}{8}, -\frac{1}{8}\right), \mathbf{p}_4 \leftrightarrow \left(\frac{6}{8}, -\frac{5}{8}, \frac{7}{8}\right), \mathbf{p}_5 \leftrightarrow \left(\frac{1}{4}, \frac{1}{8}, \frac{5}{8}\right)$
 - **c.** \mathbf{p}_6 is (-, -, +), \mathbf{p}_7 is (0, +, -), and \mathbf{p}_8 is (+, +, -).
- 17. Suppose $S = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ is an affinely independent set. Then equation (7) has a solution, because \mathbf{p} is in aff S. Hence equation (8) has a solution. By Theorem 5, the homogeneous forms of the points in S are linearly independent. Thus (8) has a unique solution. Then (7) also has a unique solution, because (8) encodes both equations that appear in (7).

The following argument mimics the proof of Theorem 7 in Section 4.4. If $S = \{\mathbf{b}_1, \dots, \mathbf{b}_k\}$ is an affinely independent set, then scalars c_1, \dots, c_k exist that satisfy (7), by definition of aff S. Suppose \mathbf{x} also has the representation

$$\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_k \mathbf{b}_k$$
 and $d_1 + \dots + d_k = 1$ (7a)

for scalars d_1, \ldots, d_k . Then subtraction produces the equation

$$\mathbf{0} = \mathbf{x} - \mathbf{x} = (c_1 - d_1)\mathbf{b}_1 + \dots + (c_k - d_k)\mathbf{b}_k$$
 (7b)

The weights in (7b) sum to 0 because the c's and the d's separately sum to 1. This is impossible, unless each weight in (8) is 0, because S is an affinely independent set. This proves that $c_i = d_i$ for i = 1, ..., k.

- **19.** If $\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$ is an affinely dependent set, then there exist scalars c_1, c_2 , and c_3 , not all zero, such that $c_1\mathbf{p}_1 + c_2\mathbf{p}_2 + c_3\mathbf{p}_3 = \mathbf{0}$ and $c_1 + c_2 + c_3 = 0$. Now use the linearity of f.
- **21.** Let $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$. Then $\det \begin{bmatrix} \tilde{\mathbf{a}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix} = \det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ 1 & 1 & 1 \end{bmatrix} =$

 $\det \begin{bmatrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{bmatrix}, \text{ by the transpose property of the}$

determinant (Theorem 5 in Section 3.2). By Exercise 30 in Section 3.3, this determinant equals 2 times the area of the triangle with vertices at **a**, **b**, and **c**.

23. If $\begin{bmatrix} \tilde{\mathbf{a}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix} \begin{bmatrix} r \\ s \\ t \end{bmatrix} = \tilde{\mathbf{p}}$, then Cramer's rule gives $r = \det \begin{bmatrix} \tilde{\mathbf{p}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix} / \det \begin{bmatrix} \tilde{\mathbf{a}} & \tilde{\mathbf{b}} & \tilde{\mathbf{c}} \end{bmatrix}$. By Exercise 21, the numerator of this quotient is twice the area of $\Delta \mathbf{pbc}$, and

the denominator is twice the area of \triangle **abc**. This proves the formula for r. The other formulas are proved using Cramer's rule for s and t.

25. The intersection point is x(4) =

$$\begin{array}{c|c}
-.1 & 1 \\
3 & +.6 & 3 \\
-6 & -5 & -5
\end{array} + .5 & 3 \\
9 & 2 & -2 & -3.4
\end{array}$$

It is not inside the triangle.

Section 8.3, page 461

- 1. See the Study Guide.
- 3. None are in conv S.
- **5.** $\mathbf{p}_1 = -\frac{1}{6}\mathbf{v}_1 + \frac{1}{3}\mathbf{v}_2 + \frac{2}{3}\mathbf{v}_3 + \frac{1}{6}\mathbf{v}_4$, so $\mathbf{p}_1 \notin \text{conv } S$. $\mathbf{p}_2 = \frac{1}{3}\mathbf{v}_1 + \frac{1}{3}\mathbf{v}_2 + \frac{1}{6}\mathbf{v}_3 + \frac{1}{6}\mathbf{v}_4$, so $\mathbf{p}_2 \in \text{conv } S$.
- 7. **a.** The barycentric coordinates of \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , and \mathbf{p}_4 are, respectively, $\left(\frac{1}{3}, \frac{1}{6}, \frac{1}{2}\right)$, $\left(0, \frac{1}{2}, \frac{1}{2}\right)$, $\left(\frac{1}{2}, -\frac{1}{4}, \frac{3}{4}\right)$, and $\left(\frac{1}{2}, \frac{3}{4}, -\frac{1}{4}\right)$.
 - **b.** \mathbf{p}_3 and \mathbf{p}_4 are outside conv T. \mathbf{p}_1 is inside conv T. \mathbf{p}_2 is on the edge $\overline{\mathbf{v}_2\mathbf{v}_3}$ of conv T.
- 9. p₁ and p₃ are outside the tetrahedron conv S. p₂ is on the face containing the vertices v₂, v₃, and v₄. p₄ is inside conv S. p₅ is on the edge between v₁ and v₃.
- 11. See the Study Guide.
- 13. If $\mathbf{p}, \mathbf{q} \in f(S)$, then there exist $\mathbf{r}, \mathbf{s} \in S$ such that $f(\mathbf{r}) = \mathbf{p}$ and $f(\mathbf{s}) = \mathbf{q}$. The goal is to show that the line segment $\mathbf{y} = (1-t)\mathbf{p} + t\mathbf{q}$, for $0 \le t \le 1$, is in f(S). Use the linearity of f and the convexity of f to show that $\mathbf{y} = f(\mathbf{w})$ for some \mathbf{w} in f(S). This will show that f(S) is convex.
- **15.** $\mathbf{p} = \frac{1}{6}\mathbf{v}_1 + \frac{1}{2}\mathbf{v}_2 + \frac{1}{3}\mathbf{v}_4$ and $\mathbf{p} = \frac{1}{2}\mathbf{v}_1 + \frac{1}{6}\mathbf{v}_2 + \frac{1}{3}\mathbf{v}_3$.
- **17.** Suppose $A \subset B$, where B is convex. Then, since B is convex, Theorem 7 implies that B contains all convex combinations of points of B. Hence B contains all convex combinations of points of A. That is, conv $A \subset B$.
- **19. a.** Use Exercise 18 to show that conv A and conv B are both subsets of conv $(A \cup B)$. This will imply that their union is also a subset of conv $(A \cup B)$.
 - **b.** One possibility is to let A be two adjacent corners of a square and let B be the other two corners. Then what is $(\operatorname{conv} A) \cup (\operatorname{conv} B)$, and what is $\operatorname{conv} (A \cup B)$?
- 21. $\mathbf{f}_{1}\left(\frac{1}{2}\right)$ $\mathbf{f}_{0}\left(\frac{1}{2}\right)$ $\mathbf{g}\left(\frac{1}{2}\right)$
- **23.** $\mathbf{g}(t) = (1-t)\mathbf{f}_0(t) + t\mathbf{f}_1(t)$ = $(1-t)[(1-t)\mathbf{p}_0 + t\mathbf{p}_1] + t[(1-t)\mathbf{p}_1 + t\mathbf{p}_2]$ = $(1-t)^2\mathbf{p}_0 + 2t(1-t)\mathbf{p}_1 + t^2\mathbf{p}_2$.

The sum of the weights in the linear combination for \mathbf{g} is $(1-t)^2 + 2t(1-t) + t^2$, which equals $(1-2t+t^2) + (2t-2t^2) + t^2 = 1$. The weights are each between 0 and 1 when $0 \le t \le 1$, so $\mathbf{g}(t)$ is in conv $\{\mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2\}$.

Section 8.4, page 469

- 1. $f(x_1, x_2) = 3x_1 + 4x_2$ and d = 13
- 3. a. Open
- b. Closed
- c. Neither

- d. Closed
- e. Closed
- 5. a. Not compact, convex
 - b. Compact, convex
 - c. Not compact, convex
 - d. Not compact, not convex
 - e. Not compact, convex
- 7. **a.** $\mathbf{n} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$ or a multiple
 - **b.** $f(\mathbf{x}) = 2x_2 + 3x_3, d = 11$
- 9. a. $\mathbf{n} = \begin{bmatrix} 3 \\ -1 \\ 2 \\ 1 \end{bmatrix}$ or a multiple
 - **b.** $f(\mathbf{x}) = 3x_1 x_2 + 2x_3 + x_4, d = 5$
- 11. \mathbf{v}_2 is on the same side as $\mathbf{0}$, \mathbf{v}_1 is on the other side, and \mathbf{v}_3 is in H
- 13. One possibility is $\mathbf{p} = \begin{bmatrix} 32 \\ -14 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} 10 \\ -7 \\ 1 \\ 0 \end{bmatrix}$,

$$\mathbf{v}_2 = \begin{bmatrix} -4\\1\\0\\1 \end{bmatrix}$$

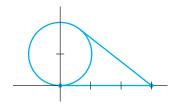
- **15.** $f(x_1, x_2, x_3, x_4) = x_1 3x_2 + 4x_3 2x_4$, and d = 5
- **17.** $f(x_1, x_2, x_3) = x_1 2x_2 + x_3$, and d = 0
- **19.** $f(x_1, x_2, x_3) = -5x_1 + 3x_2 + x_3$, and d = 0
- 21. See the Study Guide.
- 23. $f(x_1, x_2) = 3x_1 2x_2$ with d satisfying 9 < d < 10 is one possibility.
- **25.** f(x, y) = 4x + y. A natural choice for d is 12.75, which equals f(3, .75). The point (3, .75) is three-fourths of the distance between the center of $B(\mathbf{0}, 3)$ and the center of $B(\mathbf{p}, 1)$.
- **27.** Exercise 2(a) in Section 8.3 gives one possibility. Or let $S = \{(x, y) : x^2y^2 = 1 \text{ and } y > 0\}$. Then conv *S* is the upper (open) half-plane.

29. Let $\mathbf{x}, \mathbf{y} \in B(\mathbf{p}, \delta)$ and suppose $\mathbf{z} = (1 - t)\mathbf{x} + t\mathbf{y}$, where $0 \le t \le 1$. Then show that

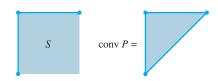
$$\|\mathbf{z} - \mathbf{p}\| = \|[(1 - t)\mathbf{x} + t\mathbf{y}] - \mathbf{p}\|$$
$$= \|(1 - t)(\mathbf{x} - \mathbf{p}) + t(\mathbf{y} - \mathbf{p})\| < \delta.$$

Section 8.5, page 481

- **1.** a. m = 1 at the point \mathbf{p}_1 b. m = 5 at the point \mathbf{p}_2
 - **c.** m = 5 at the point \mathbf{p}_3
- 3. a. m = -3 at the point \mathbf{p}_3
 - **b.** m = 1 on the set conv $\{\mathbf{p}_1, \mathbf{p}_3\}$
 - c. m = -3 on the set conv $\{\mathbf{p}_1, \mathbf{p}_2\}$
- 5. $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \end{bmatrix} \right\}$
- 7. $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 6 \end{bmatrix} \right\}$
- **9.** The origin is an extreme point, but it is not a vertex. Explain why.



11. One possibility is to let *S* be a square that includes part of the boundary but not all of it. For example, include just two adjacent edges. The convex hull of the profile *P* is a triangular region.



13. a. $f_0(C^5) = 32$, $f_1(C^5) = 80$, $f_2(C^5) = 80$, $f_3(C^5) = 40$, $f_4(C^5) = 10$, and 32 - 80 + 80 - 40 + 10 = 2.

	f_0	f_1	f_2	f_3	f_4
C^1	2				
C^2	4	4			
C^3	8	12	6		
C^4	16	32	24	8	
C^5	32	80	80	40	10

For a general formula, see the Study Guide.

- **15. a.** $f_0(P^n) = f_0(Q) + 1$
 - **b.** $f_k(P^n) = f_k(Q) + f_{k-1}(Q)$
 - **c.** $f_{n-1}(P^n) = f_{n-2}(Q) + 1$

- 17. See the Study Guide.
- **19.** Let *S* be convex and let $\mathbf{x} \in cS + dS$, where c > 0 and d > 0. Then there exist \mathbf{s}_1 and \mathbf{s}_2 in *S* such that $\mathbf{x} = c\mathbf{s}_1 + d\mathbf{s}_2$. But then

$$\mathbf{x} = c\mathbf{s}_1 + d\mathbf{s}_2 = (c+d)\left(\frac{c}{c+d}\mathbf{s}_1 + \frac{d}{c+d}\mathbf{s}_2\right).$$

Now show that the expression on the right side is a member of (c + d)S.

For the converse, pick a typical point in (c + d)S and show it is in cS + dS.

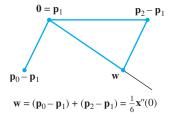
21. Hint: Suppose A and B are convex. Let $\mathbf{x}, \mathbf{y} \in A + B$. Then there exist $\mathbf{a}, \mathbf{c} \in A$ and $\mathbf{b}, \mathbf{d} \in B$ such that $\mathbf{x} = \mathbf{a} + \mathbf{b}$ and $\mathbf{y} = \mathbf{c} + \mathbf{d}$. For any t such that $0 \le t \le 1$, show that

$$\mathbf{w} = (1 - t)\mathbf{x} + t\mathbf{y} = (1 - t)(\mathbf{a} + \mathbf{b}) + t(\mathbf{c} + \mathbf{d})$$

represents a point in A + B.

Section 8.6, page 492

- 1. The control points for $\mathbf{x}(t) + \mathbf{b}$ should be $\mathbf{p}_0 + \mathbf{b}$, $\mathbf{p}_1 + \mathbf{b}$, and $\mathbf{p}_3 + \mathbf{b}$. Write the Bézier curve through these points, and show algebraically that this curve is $\mathbf{x}(t) + \mathbf{b}$. See the *Study Guide*.
- 3. a. $\mathbf{x}'(t) = (-3 + 6t 3t^2)\mathbf{p}_0 + (3 12t + 9t^2)\mathbf{p}_1 + (6t 9t^2)\mathbf{p}_2 + 3t^2\mathbf{p}_3$, so $\mathbf{x}'(0) = -3\mathbf{p}_0 + 3\mathbf{p}_1 = 3(\mathbf{p}_1 \mathbf{p}_0)$, and $\mathbf{x}'(1) = -3\mathbf{p}_2 + 3\mathbf{p}_3 = 3(\mathbf{p}_3 \mathbf{p}_2)$. This shows that the tangent vector $\mathbf{x}'(0)$ points in the direction from \mathbf{p}_0 to \mathbf{p}_1 and is three times the length of $\mathbf{p}_1 \mathbf{p}_0$. Likewise, $\mathbf{x}'(1)$ points in the direction from \mathbf{p}_2 to \mathbf{p}_3 and is three times the length of $\mathbf{p}_3 \mathbf{p}_2$. In particular, $\mathbf{x}'(1) = \mathbf{0}$ if and only if $\mathbf{p}_3 = \mathbf{p}_2$.
 - **b.** $\mathbf{x}''(t) = (6-6t)\mathbf{p}_0 + (-12+18t)\mathbf{p}_1 + (6-18t)\mathbf{p}_2 + 6t\mathbf{p}_3$, so that $\mathbf{x}''(0) = 6\mathbf{p}_0 12\mathbf{p}_1 + 6\mathbf{p}_2 = 6(\mathbf{p}_0 \mathbf{p}_1) + 6(\mathbf{p}_2 \mathbf{p}_1)$ and $\mathbf{x}''(1) = 6\mathbf{p}_1 12\mathbf{p}_2 + 6\mathbf{p}_3 = 6(\mathbf{p}_1 \mathbf{p}_2) + 6(\mathbf{p}_3 \mathbf{p}_2)$ For a picture of $\mathbf{x}''(0)$, construct a coordinate system with the origin at \mathbf{p}_1 , temporarily, label \mathbf{p}_0 as $\mathbf{p}_0 \mathbf{p}_1$, and label \mathbf{p}_2 as $\mathbf{p}_2 \mathbf{p}_1$. Finally, construct a line from this new origin through the sum of $\mathbf{p}_0 \mathbf{p}_1$ and $\mathbf{p}_2 \mathbf{p}_1$, extended out a bit. That line points in the direction of $\mathbf{x}''(0)$.



5. a. From Exercise 3(a) or equation (9) in the text,

$$\mathbf{x}'(1) = 3(\mathbf{p}_3 - \mathbf{p}_2)$$

Use the formula for $\mathbf{x}'(0)$, with the control points from $\mathbf{y}(t)$, and obtain

$$\mathbf{y}'(0) = -3\mathbf{p}_3 + 3\mathbf{p}_4 = 3(\mathbf{p}_4 - \mathbf{p}_3)$$

For C^1 continuity, $3(\mathbf{p}_3 - \mathbf{p}_2) = 3(\mathbf{p}_4 - \mathbf{p}_3)$, so $\mathbf{p}_3 = (\mathbf{p}_4 + \mathbf{p}_2)/2$, and \mathbf{p}_3 is the midpoint of the line segment from \mathbf{p}_2 to \mathbf{p}_4 .

- **b.** If $\mathbf{x}'(1) = \mathbf{y}'(0) = \mathbf{0}$, then $\mathbf{p}_2 = \mathbf{p}_3$ and $\mathbf{p}_3 = \mathbf{p}_4$. Thus, the "line segment" from \mathbf{p}_2 to \mathbf{p}_4 is just the point \mathbf{p}_3 . [*Note:* In this case, the combined curve is still C^1 continuous, by definition. However, some choices of the other "control" points, \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_5 , and \mathbf{p}_6 , can produce a curve with a visible corner at \mathbf{p}_3 , in which case the curve is not G^1 continuous at \mathbf{p}_3 .]
- Hint: Use x"(t) from Exercise 3 and adapt this for the second curve to see that

$$\mathbf{y}''(t) = 6(1-t)\mathbf{p}_3 + 6(-2+3t)\mathbf{p}_4 + 6(1-3t)\mathbf{p}_5 + 6t\mathbf{p}_6$$

Then set $\mathbf{x}''(1) = \mathbf{y}''(0)$. Since the curve is C^1 continuous at \mathbf{p}_3 , Exercise 5(a) says that the point \mathbf{p}_3 is the midpoint of the segment from \mathbf{p}_2 to \mathbf{p}_4 . This implies that

 $\mathbf{p}_4 - \mathbf{p}_3 = \mathbf{p}_3 - \mathbf{p}_2$. Use this substitution to show that \mathbf{p}_4 and \mathbf{p}_5 are uniquely determined by \mathbf{p}_1 , \mathbf{p}_2 , and \mathbf{p}_3 . Only \mathbf{p}_6 can be chosen arbitrarily.

9. Write a vector of the polynomial weights for $\mathbf{x}(t)$, expand the polynomial weights, and factor the vector as $M_B \mathbf{u}(t)$:

$$\begin{bmatrix} 1 - 4t + 6t^2 - 4t^3 + t^4 \\ 4t - 12t^2 + 12t^3 - 4t^4 \\ 6t^2 - 12t^3 + 6t^4 \\ 4t^3 - 4t^4 \\ t^4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -4 & 6 & -4 & 1 \\ 0 & 4 & -12 & 12 & -4 \\ 0 & 0 & 6 & -12 & 6 \\ 0 & 0 & 0 & 4 & -4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ t \\ t^2 \\ t^3 \\ t^4 \end{bmatrix}$$

$$M_B = \begin{bmatrix} 1 & -4 & 6 & -4 & 1 \\ 0 & 4 & -12 & 12 & -4 \\ 0 & 0 & 6 & -12 & 6 \\ 0 & 0 & 0 & 4 & -4 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 11. See the Study Guide.
- **13.** a. *Hint*: Use the fact that $\mathbf{q}_0 = \mathbf{p}_0$.
 - **b.** Multiply the first and last parts of equation (13) by $\frac{8}{3}$ and solve for $8\mathbf{q}_2$.
 - **c.** Use equation (8) to substitute for $8\mathbf{q}_3$ and then apply part (a).
- **15.** a. From equation (11), $\mathbf{v}'(1) = .5\mathbf{x}'(.5) = \mathbf{z}'(0)$.
 - **b.** Observe that $\mathbf{y}'(1) = 3(\mathbf{q}_3 \mathbf{q}_2)$. This follows from equation (9), with $\mathbf{y}(t)$ and its control points in place of $\mathbf{x}(t)$ and its control points. Similarly, for $\mathbf{z}(t)$ and its control points, $\mathbf{z}'(0) = 3(\mathbf{r}_1 \mathbf{r}_0)$. By part (a),

- $3(\mathbf{q}_3 \mathbf{q}_2) = 3(\mathbf{r}_1 \mathbf{r}_0)$. Replace \mathbf{r}_0 by \mathbf{q}_3 , and obtain $\mathbf{q}_3 \mathbf{q}_2 = \mathbf{r}_1 \mathbf{q}_3$, and hence $\mathbf{q}_3 = (\mathbf{q}_2 + \mathbf{r}_1)/2$.
- $\begin{array}{ll} \textbf{c.} & \text{Set } \textbf{q}_0 = \textbf{p}_0 \text{ and } \textbf{r}_3 = \textbf{p}_3. \text{ Compute } \textbf{q}_1 = (\textbf{p}_0 + \textbf{p}_1)/2 \\ & \text{and } \textbf{r}_2 = (\textbf{p}_2 + \textbf{p}_3)/2. \text{ Compute } \textbf{m} = (\textbf{p}_1 + \textbf{p}_2)/2. \\ & \text{Compute } \textbf{q}_2 = (\textbf{q}_1 + \textbf{m})/2 \text{ and } \textbf{r}_1 = (\textbf{m} + \textbf{r}_2)/2. \\ & \text{Compute } \textbf{q}_3 = (\textbf{q}_2 + \textbf{r}_1)/2 \text{ and set } \textbf{r}_0 = \textbf{q}_3. \end{array}$
- 17. a. $\mathbf{r}_0 = \mathbf{p}_0, \mathbf{r}_1 = \frac{\mathbf{p}_0 + 2\mathbf{p}_1}{3}, \mathbf{r}_2 = \frac{2\mathbf{p}_1 + \mathbf{p}_2}{3}, \mathbf{r}_3 = \mathbf{p}_2$
 - **b.** *Hint:* Write the standard formula (7) in this section, with \mathbf{r}_i in place of \mathbf{p}_i for $i=0,\ldots,3$, and then replace \mathbf{r}_0 and \mathbf{r}_3 by \mathbf{p}_0 and \mathbf{p}_2 , respectively:

$$\mathbf{x}(t) = (1 - 3t + 3t^2 - t^3)\mathbf{p}_0 + (3t - 6t^2 + 3t^3)\mathbf{r}_1 + (3t^2 - 3t^3)\mathbf{r}_2 + t^3\mathbf{p}_2$$
 (iii)

Use the formulas for \mathbf{r}_1 and \mathbf{r}_2 from part (a) to examine the second and third terms in this expression for $\mathbf{x}(t)$.