## The compass property

This document gives an alternate proof of the following result from the notes:
Proposition II.3.1. Let $\mathbf{A}$ and $\mathbf{B}$ be distinct points, and let $\boldsymbol{x}$ be a positive real number. Then there is a unique point $\mathbf{Y}$ on the open ray $(\mathbf{A B}$ such that $\boldsymbol{d}(\mathbf{A}, \mathrm{Y})=\boldsymbol{x}$. Furthermore, we have $\mathbf{A} * \mathbf{Y} * \mathbf{B}$ if and only if $\boldsymbol{x}<\boldsymbol{d}(\mathbf{A}, \mathrm{B})$, and similarly we have $\mathrm{A} * \mathbf{B} * \mathbf{Y}$ if and only if $\boldsymbol{x}>\boldsymbol{d}(\mathbf{A}, \mathrm{B})$.


Proof. We know there is a ruler function from $\mathbf{A B}$ to the real line such that the real numbers $\boldsymbol{a}$, $\boldsymbol{b}$ corresponding to $\mathbf{A}, \mathbf{B}$ satisfy $\boldsymbol{a}<\boldsymbol{b}$. If we choose the point $\mathbf{Y}$ which corresponds to $\boldsymbol{a}+\boldsymbol{x}$, then it follows that $\boldsymbol{d}(\mathbf{A}, \mathbf{Y})=\boldsymbol{x}$. Furthermore, $\mathbf{Y}$ lies on the open ray because we have $\mathbf{A} * \mathbf{Y} * \mathbf{B}$ if $\boldsymbol{x}<\boldsymbol{b}-\boldsymbol{a}, \mathrm{Y}=\mathrm{B}$ if $\boldsymbol{x}=\boldsymbol{b}-\boldsymbol{a}$, and $\mathrm{A} * \mathrm{~B} * \mathrm{Y}$ if $\boldsymbol{x}<\boldsymbol{b}-\boldsymbol{a}$. This shows existence.

To prove uniqueness, suppose that $\mathbf{Z}$ is a point on the open ray such that $\boldsymbol{d}(\mathbf{A}, \mathbf{Z})=\boldsymbol{x}$; let $\boldsymbol{z}$ correspond to $\mathbf{Z}$ with respect to the given ruler function. Since $\mathbf{Z}$ lies on the open ray ( $\mathbf{A B}$, it does not lie on the opposite ray, so $\mathbf{Z} * \mathbf{A} * \mathbf{B}$ is false and therefore $\boldsymbol{z}<\boldsymbol{a}<\boldsymbol{b}$ is also false. Therefore $\boldsymbol{z}$ is not less than $\boldsymbol{a}$, and since $\mathbf{Z}$ and $\mathbf{A}$ are distinct it also follows that $\boldsymbol{z}$ is not equal to $\boldsymbol{a}$. It follows that $\boldsymbol{z}>\boldsymbol{a}$. Now the conditions $|z-\boldsymbol{a}|=\boldsymbol{d}(\mathrm{A}, \mathrm{Z})=\boldsymbol{x}$ and $\boldsymbol{z}>\boldsymbol{a}$ imply that $\boldsymbol{z}=\boldsymbol{x}+\boldsymbol{a}$; since the latter corresponds to Y by construction, we have $\mathbf{Y}=\mathbf{Z}$.■

