PLANE SEPARATION AND VECTOR ALGEBRA

This is a more detailed look at the interpretation of plane separation in terms of
coordinates. We shall verify in detail that for each line L the set of points not on L
satisfies the conditions in the Plane Separation Postulate.

If L is a line in the coordinate plane R?, then L is defined by an equation of the form
0 = g(z,y) = Az + By + C

where at least on of A, B is nonzero. The two half-planes determined by L are the sets
where g(z,y) > 0 and g(z,y) < 0. We shall denote these half-planes (or sides of the line
L) by H; and H, respectively.

The first thing to notice is that H; and H, are both nonempty. For each scalar k,
consider the point Vi, = (kA, kB). We then have g(z,y) = k(A%+B?)+C, and since at least
one of A, B is nonzero it follows that the coefficient A% + B? is positive. Therefore we can
say that g(Vi) = g(kA, kB) will be positive if k > —C/(A? + B?) and g(Vi) = g(kA, kB)
will be negative if k& < —C/(A? + B?). Since there are infinitely values of k satisfying
either of these inequalities, it follows that in fact both H; and Hs contain infinitely many
points.

We also need to check that H; and Hs are both convex; in other words, if P = (x,y)
and @ = (u, v) belong to one of these half-planes and 0 < ¢ < 1, then the point P+¢(Q— P)
also belongs to the same half-plane. The key to this is the following chain of identities:

g(P+t(Q—P)) = g(az-l—t(u—x),y—i—t(v—y)) = A(:L'-i-t(u—x))-l-B(y-l-t(v—y)) =

(1—t)(Az+ By) + t(Az+By) + C = (1—t)-g(P) + t-g9(Q) .

If P and @ lie on the same side of L, then either g(P) and g(Q) are both positive or they
are both negative. Note that ¢ and 1 —¢ are both positive in either case. If g(P) and ¢(Q)
are positive, then it follows that

g(P+t(Q@—-P)) = (1—t)-g(P) + t-g(Q)

must also be positive since it is a sum of two products of positive numbers, while if g(P)
and g(Q) are negative, then it follows that the expression is a sum of two products, each
with one positive and one negative factor, and hence in this case g( P+tQ— P)) must
be negative.

Finally, we need to show if P is in one half-plane and () is in the other, then the
open segment (PQ) and the line L have a point in common. In the terms of the preceding
discussions, this means that we can find some ¢ such that 0 < ¢ <1 and g( P+t(Q—P)) =
0.



We shall only consider the case where g(P) < 0 < ¢(Q); the other case, in which
g(P) > 0> g(Q), can be obtained by interchanging the roles of P and @ in the argument
below. By the fundamental identity displayed above, we need to find a value of ¢ such that

0 = (1-tg(P) + tg(Q) = g(P) + t(9(Q) —g(P)) .
The solution to this equation is

—g(P)
9(Q) — g(P)

where the denominator is positive since ¢(Q) > ¢g(P). By assumption g(P) is negative, and
therefore the entire expression for ¢ is positive. Furthermore, we also have 0 < —g(P) <
9(Q) — g(P), so it also follows that ¢ < 1. Therefore, if we take ¢ as given above, then the
point P + t(Q) — P) will lie on both the open segment (PQ)) and the line L.u



