Affine transformations and convexity

The purpose of this document is to prove some basic properties of affine transformations
involving convex sets. Here are a few online references for background information:

http://math.ucr.edu/~res/progeom/pgnotes02.pdf
http://math.ucr.edu/~res/math133/metgeom. pdf

Recall that an affine transformation of R" is a map of the form F'(x) = b+ A(x), where b € E
is some fixed vector and A is an invertible linear tranformation of R™.

Affine transformations satisfy a weak analog of the basic identities which characterize linear
transformations.

LEMMA 1. Let F as above be an affine transformation, let xq, --- ,X; € R", and suppose that
to, -+ ,tx € Rsatisty >°; t; = 1. Then

F(Zj tjxj> = Z tj F (%)

Notation. If tg, --- ,t; € R satisfy Zj t; = 1land xq, - ,x; € R", then Zj t; x; is said to
be an affine combination of the vectors xqg, -+ ,x; € R".

Proof. Since 3 ; t; = 1 we have

F(thjxj) = A(thjxj> +b = A(thjxj> + > tjb =

J
StiAx; + ) tib = >t (Ax; +b) = Y 4 F(x))
J J J J
which is what we wanted prove.m
We also note the following simple property of affine transformations in R?:

LEMMA 2. Let F be an affine transformation of R?, and let x, y, z, w be points such that the
lines xy and zw are parallel. Then the lines F(x)F(y) and F(z)F(w) are also parallel.

Proof. Since the two lines are disjoint and F' is 1-1, it follows that their images — which are
also lines because F' is an affine transformation — must also be disjoint.m

CONVEX SETS. Here are the basic definitions we need for convexity:

Definition. If x, y € R", then the closed segment [xy]| is the set of all vectors v such that
v = tx + (1-t)y

where ¢ € R satisfies 0 < ¢ < 1.

This corresponds to the intuitive notion of closed line segment in elementary geometry.
Definition. A subset K C R" is said to be convex if x, y € K implies that [xy] is contained in
K; in other words, x, y € K and 0 < ¢ < 1 implies that tx + (1—t)y € K.

1



The following result suggests that the notions of convexity and affine transformation have some
useful interrelationships.

LEMMA 3. Let K C R" be convex, let xq, -+ ,X,, € K, and suppose that tg, -+ ,t,, € R
satisfy t; >0 and >_; t; = 1. Then ) ; t;x; € K.

Notation. 1If ty, --- ,t, € R satisfy t; > 0 and Zj t; = 1and xg, --- ,%X,, € R", then
Zj t;x; is said to be a convex combination of the vectors xq, --- ,X,, € R".

Proof. Since a term ¢; x; makes no contribution to a sum if ¢; = 0, it suffices to consider the case
where each t; is positive. The proof proceeds by induction on m. If m = 1 the result is tautological,
and if m = 2 the result follows from the definition of convexity.

Assume now that the result is true for m > 2, and suppose we are given scalars tg, -+ ,t,11 €
R satisfying ¢t; > 0 and Zj t; = 1 together with vectors xg, -+ ,Xm41 € K. Set o equal to
> i<m ti» and for 0 < s < m set s; equal to t;/0. Then it follows that s; > 0 and > , s; = 1,
so by induction we know that y = ; 8jX; isin K. By construction we have 0 < ¢ < 1 and
0 + tm+1 = 1, and therefore it follows that

thxj = Z x| + i X1 =
j

j<m

oy + tmt1Xm+1 € K
which is what we wanted to prove.m

COROLLARY 4. IfF is an affine transformation of R™ and A C R™ is convex, then the image
F[A] is also convex.

Proof. Suppose that x, y € A and 0 <t < 1. Then Lemma 1 implies that
F(tx+(1—-t)y) = tFx) + (1—-1t) F(y)

and hence the segment [F(x)F(y)] is contained in F[A].

Since every pair of points in F[A] can be expressed as F(x) and F(y) for some x, y € A, the
preceding sentence implies that F[A] must be convex.m

Ezxtreme points. This is a fundamental concept involving convex sets.

Definition. A point p in a convex set K is said to be an extrme point if it cannot be written in
the form p = ¢x+ (1 —t)y where x and y are distinct points of K and 0 < ¢ < 1; informally
speaking, this means p is not between two other points of K.

EXAMPLE 0. Let a < b € R, and let X C R be the closed interval [a,b]. We claim that a and b
are the extreme points of X. — First of all, if ¢ < x < b and

r—a

t =
b—a

then 0 <t < 1and z = (1—t)a + tb, so the two endpoints are the only possible extreme points. To
see that each is an extreme point, suppose we are given a point & which is NOT an extreme point.
Choose distinct points v and v in [a, b] and ¢ in the open interval (0, 1) such that x = (1—t)u + tv;
without loss of generality we may as well assume u < v (note that ¢ € (0,1) implies 1 — ¢ € (0,1)
and 1 — (1 —t) = t). The inequalities in the preceding sentence imply that u < x < v, and since
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a and b are minimal and maximal points of the interval X = [a,b] it follows that = # a,b, which
means that a and b are extreme points of X.

EXAMPLE 1. If a, b, ¢ are noncollinear points and X is the solid triangular region consisting
of all convex combinations of these vectors, then the extreme points of X are a, b, and c¢. —
First of all, this set is convex because Lemma 3 implies that a convex combination of convex
combinations is again a convex combination. To prove the assertion about extreme points, note
that if ta+ ub 4 v c is a convex combination in which at least two coefficients are positive, then
an argument like the inductive step of Lemma 3 implies that this convex combination is between
two others, and therefore the only possible extreme points are the original vectors. Furthermore,
ifp = tx+ (1 —t)y where x and y are convex combinations and 0 < ¢ < 1, then one can check
directly that at least two barycentric coordinates of p must be positive (this is a bit messy but
totally elementary). Therefore a point that is not an extreme point cannot be one of a, b, ¢ and
hence these must be the extreme points of X.

EXAMPLE 2. Let X be the solid rectangular region in R? given by [0, p] x [0, q] where 0 < ¢ < p.
In this case we claim that X is convex and the extreme points are the vertices (0,0), (p,0), (0,q)
and (p, q). — This will be a consequence of Example 0 and the following result:

PROPOSITION 5. Let Ky and K, be convex subsets of R" and R" respectively. Then
K x Ky C R" x R™ = R™™ is convex. Furthermore, a point (pi,p2) is an extreme point of
Ky x Ky if and only if py is an extreme point of K1 and po is an extreme point of Ko

Proof. The first step is to prove that K; x K is convex. Suppose that ¢t € (0,1) and that (x1,X2)
and (y1,y2) belong to K7 x K. Then

(1—1)-(x1,%2) + t-(yr,y2) = (A=) x1+t-y;,(1—-1)-x2+1-y2)

and by convexity the first and second coordinates belong to K7 and Ky respectively.

The statement about extreme points will follow if we can prove the contrapositive: A point p
in Ky x K5 is not an extreme point if and only if at least one of its coordinates is not an extreme
point of the corresponding factor. — Write p = (p1,p2). If p is not an extreme point then we
have

p = (P,p2) = (1-1%) (x1,%x2) + t-(y1,¥2)

where 0 < t < 1 and (x1,x2) and (y1,y2) are distinct points of K; x K. By the definition of
an ordered pair, it follows that either the first or second coordinates of (x1,x2) and (y1,y2) are
distinct; if we choose i = 1 or 2 such that the i*" coordinates are distinct, then it follows that
p; cannot be an extreme point of K;. Conversely, suppose that one coordinate p; of p is not an
extreme point of the corresponding convex set K;. Without loss of generality, we may as well
assume that ¢ = 1 (if ¢ = 2, reverse the roles of 1 and 2 in the argument we shall give to obtain the
same conclusion in that case). Choose x; #y; € K; and t € (0,1) such that p; = (1 —¢)x; +ty;.
Then we also have

P = (P1,p2) = (1—1t) (x1,p2) + t-(y1,P2)
and therefore p is not an extreme point of K1 X Ko.m
The final result reflects the importance of extreme points.

THEOREM 6. Let A C R" be a convex set, and suppose that F' is an affine transformation of
R"™. Then F maps the extreme points of A onto the extreme points of F[A].
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Proof.  We shall prove the following contrapositive statement: If p € A, then p is not an
extreme point of A if and only if F(p) is not an extreme point of F[A]. — Note that every point
q € F[A] is F(p) for some p € A.

Suppose that p is not an extreme point of A. Then p = ¢tx+ (1 —t)y where x and y are
distinct points of A and 0 < ¢ < 1. By Lemma 1 we then have
F(p) = tF(x)+ (1 —1)F(y)
and since F' is 1-1 it follows that F(p) is not an extreme point of F[A]. To prove the converse,
combine this argument with the fact that F~! is also affine.m

COROLLARY 7. If0<p,qand 0 <r,s and F is an affine equivalence mapping [0, p| x [0, ¢]
onto [0,7] x [0, s], then F' sends the vertices of the first solid rectangular region to the vertices of
the second.

This follows immediately from the theorem and Example 2.m

Convex hulls. Given a subset X in R", the convex hull is defined so that it will be the unique
smallest convex subset containing X.

Definition. If X C R", then the convex hull of X, written Conv (X), is the set of all convex
combinations Zj t; x; where xg, --- ,X,, € X and tg, --- ,t,, € Rsatisfy t; > 0 and Zj t; = L

Here are some elementary properties of convex hulls; they combine to prove that the convex
hull is in fact the unique smallest convex subset of R™ containing X.

LEMMA 8. The convex hull has the following properties:
(1) If X C R", then Conv (X) is a convex subset of R".
(79) If X is convex, then X = Conv (X).
(t91) If X CY C R", then Conv (X) C Conv (Y).

Proof.  The third statement follows immediately from the definition, and the second follows
immediately from Lemma 3.

To prove the first statement, let y; (where 1 < i < n) be points of Conv (X), and let s; > 0
satisfy >, s; = 1. We can then find finitely many x; € X such that for each i we have

Vi = Y tigx
J
where each ¢; ; is nonnegative and j tijy =1, and hence we also have the following:

Z $iyi = Y si (Zj tz‘,jxj> = Z (D2: sitig) Xy

i J
We claim that the sum of the coefficients in the right hand expression is equal to 1; this will prove
that the vector in question belongs to Conv (X ), which is what we want to prove. This may be
verified as follows:

Z (> sitiy) = Zsi (Zj ti,j) = Zsi'l =1

J i



As noted above, this shows that Conv (X) is closed under taking convex combinations and hence
is convex.m

Finally, the following result is often very useful for studying the effects of affine transformations
on geometrical figures, especially when combined with Theorem 6.

THEOREM 9. If X C R" and F is an affine transformation of R", then F' maps Conv (X) onto

Conv (F[X]).

Proof. = We shall first show that F' maps Conv (X) into Conv (F[X]). To see this, note that
v € Conv (X) implies that v = Zj tj x; where X, --- ,X,, € X and tg, --- ,t,, € Rsatisfy t; >0
and ) ; tj = 1, and since F'is an affine transformation we have

F<Zj tjxj) - thF(xj) € Conv (F[X]) .

To see that every point in Conv (F[X]) comes from a point in Conv (X), note that a point y in
Conv (F'[X]) has the form } . t; F(x;) for suitable ¢; and x;, and by Lemma 1 this expression is

equal to F (Z it xj>; since the expression inside the parentheses lies in Conv (X ), it follows that
y € F[Conv (X)] as required.m



Affine transformations and convexity — 11

We shall now use the preceding material to show that affine transformations also preserve
several other fundamental types of convex sets. The first result deals with the two half-spaces
determined by a hyperplane in H in R". If n = 2 or 3, these are just the two “sides” of a line or a
plane respectively; for the sake of completeness, we shall formulate things more generally.

LEMMA 10. Let H C R" be a hyperplane. Then there is a unit vector n € R" such that n is
perpendicular to every vector of the form x —y, wherey and y are in h. This vector is unique up
to multiplication by +1, and H is the set of all vectors x satisfying the equation n-x = k for some
real number k.

Proof. Write H = v + V where V is an (n — 1)-dimensional vector subspace of R™. Then the
orthogonal complement V' is 1-dimensional and hence spanned by some unit vector n. If x and y
are in H, write these vectors as v + x¢ and v + yo where xg,yo € V. Then x —y = x9 — yo, and
since the right had side lies in V' it follows that the difference vector is perpendicular to n.

Since V is uniquely determined by H, so is V', and since the latter has exactly two unit
vectors (which are the negatives of each other), the uniqueness statement follows. Finally, we know
that V is defined by the equation n-z = 0 and that v € V. If kK = n - v, then it follows that
n-x = k if and only if n- (x — v) = 0, which in turn is true if and only if x — v € V', and the latter
is true if and only if x e v+ V = H.n

Definition. Let H be a hyperplane, let n be one of the two unit vectors as in Lemma 10, and let
k be such that H is defined by the equation n-x = k. The two half-spaces determined by H are
the sets defined by the strict inequalities n-x < k and n-x > k. We also say that H separates R"
into these half-spaces.

We claim that the half-spaces in the definition do not depend upon the choices of n or k. First
of all, if we fix n, there is a unique k such that H is defined by n-x = k, for if k # k' then the sets
defined by n-x = k and n - x = k’ are disjoint. Next, if we replace n by its negative, then H will
be defined by the equation (—n)-x = —k, and the two half-planes in this case are defined by the
inequalities (—n)-x < —k and (—n) - x > —k. Since these are equivalent ton-x > kand n-x < k
respectively, we obtain the same subsets if we use —n instead of n.

Note further that if ¢ - x = M is any linear equation defining H, then the two half-spaces are
defined by the inequalities ¢ - x < M and ¢-x > M. This is true because C = Ln where L > 0
and u is a unit vector, so that the two inequalities given in the preceding sentence are equivalent
ton-x<M/Landn-x > M/L.

THEOREM 11. If H C R" is a hyperplane and F' is an affine transformation of R", then F
maps the each half-space W in R™ — H to a half-space V in R" — F[H]. Furthermore, if z € R"
is not in H, then F sends the half-space for H containing z to the half-space for F|H] containing
F(z).

Proof. It suffices to prove the second statement. Choose a nonzero vector ¢ and a scalar k such
that H is defined by the equation c - x = k. We shall need a formula for the affine transformation
F~1. If F(x) is given by Ax+ b where A is an invertible matrix and b is some vector, then the we
may solve the equation y = F(x) to obtain the following:

x = Fly) = A'y—4a"p



If we rewrite the equation defining H in the matrix form %cx = k, then the formula for the inverse
function yields the equation

TAly = k+ TA b

which can be rewritten in the form
My = k+ %A = m

where d = TA~!c; this is a defining equation for F[H]. By our hypotheses and the formulas given
above, we know that Tcx < k and "Tex > k are equivalent to ™dy < m and ™y > m respectively,
and therefore F' sends the two half-spaces determined by H into the two half-spaces determined by
F[H]=

The preceding theorem shows that affine transformations preserve half-spaces. Here are some
further examples of sets in R? which are preserved by affine transformations.

THEOREM 12. Let F be an affine transformation of R?, and let a, b and ¢ be noncollinear
points. Then the following hold:

(1) F sends the interior of Zabc to the interior of /F(a)F (b)F(c).

(14) F sends the interior of Aabc to the interior of AF(a)F(b)F(c).

Proof. (i) By Theorem 11 we know that F' sends the half-plane S(c) for the line ab containing
c to the half-plane S(F(c)) for the line F(a)F(b) containing F(c). Similarly, by Theorem 11
we know that F' sends the half-plane S(a) for the line be containing a to the half-plane S(F'(a))
for the line F(b) F'(c) containing F'(a). Hence F' sends the intersection of S(c) and S(a), which
is the interior of Zabc, to the intersection of S(F(c)) and S(F'(a)), which is the the interior of
LF(a)F(b)F(c).

(74) Since F' preserves intersections, as in the first part of the proof we know that F' maps
the intersection of the interiors of Zabc and /bca — which is the interior of Aabc — to the
intersection of the interiors of /ZF(a)F(b)F(c) and ZF(b)F(c)F(a) — which is the interior of
AF(a)F(b)F(c)m



