You are here: Duckware » Technology » World's Hardest 'Easy Geometry'

## World's Hardest 'Easy Geometry' Problem

Another puzzle: Can you solve this frog riddle (a math probability problem)?

Here are the World's Hardest Easy Geometry Problem, as found on Keith Enevoldsen's Think Zone web page:


Solutions to both of these problems can be found far below -- so be careful how far you scroll below if you don't want to see the answer.

What makes these geometry problems so interesting (and 'hard') is that only elementary geometry is allowed (no trigonometry). Like, basic rules about parallel and intersecting lines and the angles formed:

as well as simple triangle facts:

- the sum of interior angles of a triangle add up to $180^{\circ}$
- isosceles triangle theorem about two equal angles/sides
- an equilateral triangle has three $60^{\circ}$ angles and three equal length sides
as well as what makes two triangles congruent:


The solutions below are by design not rigorous proofs, but rather provide just enough information to make the true solution very obvious to most readers.

You must click to find the images associated with these solutions -so as to not spoil the fun for those that want to try to find the solution for themselves first.

## Problem One Solution

## Solution One Image

1. Calculate some known angles:

- $\angle \mathrm{ACB}=180-(10+70)-(60+20)=20^{\circ}$
- $\angle \mathrm{AEB}=180-70-(60+20)=30^{\circ}$

2. Draw a line from point D parallel to AB , labeling the intersection with BC as a new point F and conclude:

- $\triangle \mathrm{DCF} \sim \triangle \mathrm{ACB}$
- $\angle \mathrm{CFD}=\angle \mathrm{CBA}=60+20=80^{\circ}$
- $\angle \mathrm{DFB}=180-80=100^{\circ}$
- $\angle \mathrm{CDF}=\angle \mathrm{CAB}=70+10=80^{\circ}$
- $\angle \mathrm{ADF}=180-80=100^{\circ}$
- $\angle \mathrm{BDF}=180-100-20=60^{\circ}$

3. Draw a line FA labeling the intersection with DB as a new point G and conclude:

- $\triangle \mathrm{ADF} \cong \triangle \mathrm{BFD}$
- $\angle \mathrm{AFD}=\angle \mathrm{BDF}=60^{\circ}$
- $\angle \mathrm{DGF}=180-60-60=60^{\circ}=\angle \mathrm{AGB}$
- $\angle \mathrm{GAB}=180-60-60=60^{\circ}$
- $\triangle \mathrm{DFG}$ (with all angles $60^{\circ}$ ) is equilateral
- $\Delta \mathrm{AGB}$ (with all angles $60^{\circ}$ ) is equilateral

4. $\triangle$ CFA with two $20^{\circ}$ angles is isosceles, so $\mathrm{FC}=\mathrm{FA}$
5. Draw a line CG, which bisects $\angle \mathrm{ACB}$ and conclude:

- $\triangle \mathrm{ACG} \cong \triangle \mathrm{CAE}$
- $\mathrm{FC}-\mathrm{CE}=\mathrm{FA}-\mathrm{AG}=\mathrm{FE}=\mathrm{FG}$
- $\mathrm{FG}=\mathrm{FD}$, so $\mathrm{FE}=\mathrm{FD}$

6. With two equal sides, $\triangle \mathrm{DFE}$ is isosceles and conclude:

- $\angle \mathrm{DEF}=30+\mathrm{x}=(180-80) / 2=50$

Answer: $\mathrm{x}=20^{\circ}$

## Problem Two Solution

Solution Two Image

1. Calculate some known angles:

- $\angle \mathrm{ACB}=180-(10+70)-(60+20)=20^{\circ}$
- $\angle \mathrm{AEB}=180-60-(50+30)=40^{\circ}$

2. Draw a line from point E parallel to AB , labeling the intersection with $A C$ as a new point $F$ and conclude:

- $\triangle \mathrm{FCE} \sim \triangle \mathrm{ACB}$
- $\angle \mathrm{CEF}=\angle \mathrm{CBA}=50+30=80^{\circ}$
- $\angle \mathrm{FEB}=180-80=100^{\circ}$
- $\angle \mathrm{AEF}=100-40=60^{\circ}$
- $\angle \mathrm{CFE}=\angle \mathrm{CAB}=60+20=80^{\circ}$
- $\angle \mathrm{EFA}=180-80=100^{\circ}$

3. Draw a line FB labeling the intersection with AE as a new point G
and conclude:

- $\triangle \mathrm{AFE} \cong \triangle \mathrm{BEF}$
- $\angle \mathrm{AFB}=\angle \mathrm{BEA}=40^{\circ}$
- $\angle \mathrm{BFE}=\angle \mathrm{AEF}=60^{\circ}$
- $\angle \mathrm{FGE}=180-60-60=60^{\circ}=\angle \mathrm{AGB}$.
- $\angle \mathrm{ABG}=180-60-60=60^{\circ}$

4. Draw a line DG. Since $\mathrm{AD}=\mathrm{AB}$ (leg of isosceles) and $\mathrm{AG}=\mathrm{AB}$ (leg of equilateral), conclude:

- $\mathrm{AD}=\mathrm{AG}$.
- $\triangle \mathrm{DAG}$ is isosceles
- $\angle \mathrm{ADG}=\angle \mathrm{AGD}=(180-20) / 2=80^{\circ}$

5. Since $\angle \mathrm{DGF}=180-80-60=40^{\circ}$, conclude:

- $\Delta \mathrm{FDG}$ (with two $40^{\circ}$ angles) is isosceles, so $\mathrm{DF}=\mathrm{DG}$

6. With $\mathrm{EF}=\mathrm{EG}$ (legs of equilateral) and $\mathrm{DE}=\mathrm{DE}$ (same line segment) conclude:

- $\triangle \mathrm{DEF} \cong \triangle \mathrm{DEG}$ by side-side-side rule
- $\angle \mathrm{DEF}=\angle \mathrm{DEG}=\mathrm{x}$
- $\angle \mathrm{FEG}=60=\mathrm{x}+\mathrm{x}$

Answer: $\mathrm{x}=30^{\circ}$

