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I I I :    Basic Euclidean concepts and theorems 
 
  

 
The purpose of this unit is to develop the main results of Euclidean geometry using the 
approach presented in the previous units. 
 

The choice of topics reflects the current subject requirements and recommendations for 
mathematics in the following State of California documents:  
 

http://www.ctc.ca.gov/educator-prep/standards/SSMP-Handbook-Math.pdf 
 

http://www.cde.ca.gov/ci/ma/cf/ 
 

We shall start by discussing perpendicularity and parallels, and we shall proceed to 
discuss standard material on triangles, quadrilaterals and regular polygons, the classical 
results on concurrence and similarity for triangles, some basic facts regarding 
intersections of a circle with a line or another circle, ending with a brief discussion of 
areas and volumes.  References for further reading are also included. 

 

  

I I I.1 : Perpendicular lines and planes 
 

 

We shall follow the recommendation on page 36 (= online page 42) of the document 

http://www.ctc.ca.gov/educator-prep/standards/SSMP-Handbook-Math.pdf , which states,    
“An introductory college geometry course should start from the beginning.”   Much if not 
most of the material will be review, but one important new feature is that it discusses 
familiar elementary topics from the more advanced viewpoint of this course. 
 
 

Perpendicular lines 
 
 

We have already defined perpendicularity from the analytic approach in Section I.1; 

specifically, two intersecting lines  AB  and  AC  are perpendicular (written  AB ⊥⊥⊥⊥ AC)  

if and only if their inner product satisfies  (B – A) · (C – A)   =   0.    This is equivalent to 

the synthetic criterion  |∠∠∠∠CAB|   =   90°,  and by the Supplement Postulate for angle 
measure we also have the following: 
 

Proposition 1.  Let A,  B,  C be noncollinear points, and suppose that  E  is a point such 

that  E∗A∗C  holds.  Then  AB ⊥⊥⊥⊥ AC  if and only if   |∠∠∠∠EAB|   =   |∠∠∠∠CAB|. 
 

Proof.    By the Supplement Postulate we have 
 

|∠∠∠∠EAB|   +   |∠∠∠∠CAB|     =    180° 
 

and hence by elementary algebra we conclude that  |∠∠∠∠EAB|   =   |∠∠∠∠CAB|  if and only 

if   2 |∠∠∠∠CAB|   =   180°,  which of course is equivalent to  |∠∠∠∠CAB|  =   90°.�  

 



 88 

Corollary 2.   Let  A,  B,  C be noncollinear points, and suppose that  D  and  E  are 

points such that both  E∗A∗C and  B∗A∗D hold.  Then  AB  ⊥⊥⊥⊥  AC  if and only if 
 

|∠∠∠∠CAB| =   |∠∠∠∠EAB|   =   |∠∠∠∠EAD|   =   |∠∠∠∠DAC|   =   90°. 
 

 
 

The corollary follows from repeated applications of the proposition.� 
 

The Protractor Postulate and the preceding observations immediately yield the following 
result: 
 

Proposition 3.    Let  L  be a line, let  A  be a point of   L,  and let  P  be a plane 

containing  L.  Then there is a unique line  M  in  P such that  A  ∈∈∈∈     M  and  L  ⊥⊥⊥⊥  M. 
 

Note that the uniqueness only applies to lines in the given plane.  In  3 – 
dimensional space there are as many lines perpendicular to  L  at  A  as there are 

planes containing  L.  For example, if  L  is the usual  x – axis in  RRRR
3
, then a line  0C  

through the origin is perpendicular to  L  if and only if the first coordinate of  C  is zero 
(and at least one of the other two coordinates is nonzero), which is equivalent to saying 

that the point  C  lies in the   y z – plane. 
 

Proof.    Let  B  be a second point on  L, and  X  be a point of the plane  P  which is not 

on  L.  Then there is a unique ray  [AC  such that  |∠∠∠∠ CAB|  =  90°  and  (AC  lies on 

the same side of  L  as  X.  It follows that  AC ⊥⊥⊥⊥ AB  (where  AB =  L). 
 

To prove uniqueness, suppose that  AD  is an arbitrary line in  P  such that  AD ⊥⊥⊥⊥ AB  

(where  AB =  L).  There are two cases to consider, depending upon whether or not  C 

and  D  lie on the same side of  L.  If they do, then by the uniqueness part of the 

Protractor Postulate we know that  [AD   =   [AC  and hence we also have that the lines  

AD  and  AC  are identical.  On the other hand, if  D  and  C  lie on opposite sides of  L, 

take  E  to be a point such that  E∗A∗C.  Then  D  and  E  lie on the same side of  L,  so 

the uniqueness part of the Protractor Postulate now implies that  [AD  =  [AE,  which in 

turn implies  AD  =  AE.  Since  A,  C  and  E  are distinct collinear points, the latter 

implies  AD  =  AC.� 
 

Of course, there is analogous result about perpendiculars if we are given a point  A  
which does  not  lie on  L. 
 

Proposition 4.    Let  L  be a line, and let  A  be a point  not  on L.  Then there is a 

unique line  M  such that  A  ∈∈∈∈     M  and   L ⊥⊥⊥⊥ M.  
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Proof.    With the tools currently at our disposal, it is much easier and faster to do this 

analytically.  Let  B  and   C  be distinct points of  L.  Express the vector  A – B  as a 

sum of the form  v + w,  where  v  is a scalar multiple of  C – B  and  w  is 

perpendicular to  C – B.  Set  D  equal to  v + B. 
 

 
 

We claim that  AD is perpendicular to  L  and there is no other line  M  in the same plane 

such that  A  ∈∈∈∈     M  and  M  ⊥⊥⊥⊥ L.  To see the first part, note that we have 
 

A – D   =   (A  –  B)  – (D  –  B)   =   (v + w) – v  =  w 
 

and there is a (possibly zero) constant  k  such that  v  =  (D – B)  =  k (C – B).  

Therefore we have   
 

(D – A) · (D – B)   =   w · [k(C – B)]   =   k [w · (C – B)]   =   k · 0   =   0 
 

so that  AD  is perpendicular to  L.  
 

It remains to show that there is only one perpendicular.  Suppose that  E  ∈∈∈∈     L  is such 

that  L  is perpendicular to  AE, and write  E – B   =   x (C – B)  for a suitable scalar  x.  

We then have  
 

A – E   =   (A – D)  –  (E – D)    =    w  +  (k – x) · (C – B) 
 

so that  
 

(A – E) · (C – B)  =   (w  +  (k – x) · (C – B) ) · (C – B)  =  (k – x) || C – B || 

2
. 

 

The lines  AE  and  L  are perpendicular if and only if this dot product vanishes, and 

since the length of  B – C  is positive, this can happen if and only if  k – x  =  0,  which 

is equivalent to saying that  E  =  D.� 
 

Corollary 5.    Suppose that  L,  M  and  N  are three lines in a plane  P  such that   

L ⊥⊥⊥⊥ M  and   M ⊥⊥⊥⊥ N.   Then  L || N. 
 

Proof.    Take  B  and  C  to be the points where  M  meets  L  and  N  respectively.  If   

B  =  C,  then by uniqueness of perpendiculars at a point we would have  L  =  N; since 

L  and  N  are distinct, it follows that  B  and  C  are also distinct.  If  L  and  N  were not 
parallel, then they would have a point  A  in common.  This point could not lie on  M,  for 
if it did then it would be equal to both  B  and  C. It would then follow that  L  and  N  
would be distinct perpendiculars to  M  through the external point  A, contradicting an 
earlier result.  Therefore  L  and  N  cannot have any points in common, so that  L || N.� 
 

There is also a converse to the preceding corollary.  We shall prove a more general 
result in the next section, but this special case is important enough in its own right to be 
mentioned separately. 
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Proposition 6.   Suppose that  L,  M  and  N  are three lines in a plane  P such that   

L || N  and  M ⊥⊥⊥⊥ N.  Then we also have L ⊥⊥⊥⊥ M. 
 

Proof.    We shall prove this result algebraically; express the plane  P  as  q + S, where  

S  is a 2 – dimensional vector subspace of  RRRR
3
.  Similarly, write  L  =  x0 + V  for some 

1 – dimensional vector subspace V, and let  N  =  z0 + V  where z0 does not lie on  L.  

Let  v  be a nonzero vector in  V, so that  { v }  forms a basis for  V.  Write  M  =  w0 + U  

for some 1 – dimensional subspace  U, and let  u  be a nonzero vector in  U, so that   

{ u }  forms a basis for U.   Since all of the vectors  x0 ,  z0 ,  w0   belong to  S, it follows 

that  
 

P   =   x0 + S   =   z0 + S   =   w0 + S 
 

and since  L,  M  and  N a re all contained in  P these imply that  U  and  V  are vector 
subspaces of  S.   
 

Since  M  and  N  are perpendicular, it follows that there is a point  q  which lies on both;  

it follows that  q  +  u  and  q  +  v  are second points of  M  and  N  respectively, and 

thus the perpendicularity condition on the lines means that  u · v  =  0.   Since these 
vectors belong to  S  and are nonzero, they are linearly independent and hence form a 
basis for  S. 
 

We next claim that  L  and  M  have a point in common; in other words, there are scalars 

a  and  b  such that  x0 + a v   =   w0  +  b u.   This follows because  x0  –  w0  lies in  S  
and thus is a linear combination of  u  and  v.   Again, if  p  is this common point, then   

p  +  u  and  p  +  v  are second points of  M  and  L  respectively, and since  u · v  =  0  
it follows that  M  and  L  are perpendicular.� 
 
 

Perpendicular bisectors 
 
 

We can now prove a result that is used very often in elementary geometry. 
 

Proposition 7.  (Planar Perpendicular Bisector Theorem) Let  A  and   B  be distinct 

points, let  P  be a plane containing them, suppose that  D  is the midpoint of   [AB],   
and let  M  be the unique perpendicular to  AB  at  D  in the plane  P.  Then a point   

X  ∈∈∈∈     P  lies on  M   if and only if  d (X, A) =  d (X, B). 
 

 
 

In classical language this is often stated as something like, “The locus of points (in a 
plane) that are equidistant from two distinct points  A and  B  is the perpendicular 
bisector of  [AB].”    
 

TERMINOLOGY.   This is a good time to mention that  the classical word locus in 
older geometry texts really has the same meaning as the modern word set. 
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Proof.      There are two cases depending upon whether or not  X  lies on  AB.  Suppose 

first that  X  lies on  AB.  Then  X  =  A  +  k(B – A)  for some scalar  k, and we claim 

that  k  must be equal to  ½  so that  X  =  D.   We may rewrite the expression for  X  

equivalently as  X  =  B  +  (1 – k) · (A – B),  and therefore the equation  d(X, A)  =  

d(X, B),  which is equivalent to the squared equation  d(X, A) 

2
  =  d(X, B) 

2
,  is also 

equivalent to the following string of equations:  
 

(1 – k) 

2
 · || A – B ||  

2
   =   || (1 – k) · (A – B) ||  

2
   =     || X – B ||  

2
   = 

 

|| X – A || 

2
   =    || k ·(B – A) ||  

2
   =    k  

2
 · || B – A ||  

2
   =   k 

2
 · || A – B ||  

2
 

 

Since the length of  A – B  is positive, we may cancel it from the left and right sides to 

obtain the scalar equation  (1 – k) 

2
  =   k 

2
,  and the later reduces to   1 – 2k  =  0,  

so that   k  =  ½  as claimed. 
 

Suppose now that  X  does not lie on  AB .   If we have  XD ⊥⊥⊥⊥ AB  then by  SAS  we 

also have  ����XDA   ≅≅≅≅   ����XDB,  so that  d(X, A)  =  d(X, B).  Conversely, if the latter is 

true then we have  ����XDA   ≅≅≅≅   ����XDB  by   SSS,  so that  |∠∠∠∠XDA|   =   |∠∠∠∠XDB|.  By 

previous results this means that  XD  ⊥⊥⊥⊥  AB .� 
 
 

Perpendicularity and parallelism in space 

 
The ludicrous state of solid geometry … made 
me pass over this branch.  
 

Plato (428 B.C.E – 347 B.C.E.),  

The Republic, Book V I I 
 

Three – dimensional geometry is considerably more complicated than its two – 
dimensional counterpart for many reasons, and accordingly it is not surprising that most 
accounts of elementary geometry only discuss solid geometry to a very limited extent.  
Many of the complications are already evident when one considers questions about 
parallel and perpendicular lines and planes in space, as we shall do in the final part of 
this section of the notes.  Systematic use of linear algebra will simplify and clarify the 
discussion considerably. 
 

The most basic notion involves perpendicularity of a line and plane in space.   
 

Definition.  Suppose that the line  L  and the plane  P  have a point  X  in common (but  
L  is not contained in  P, so there is only one such point).  We shall say that the line   L  

is perpendicular to the plane  P  and write  L  ⊥⊥⊥⊥  P  if  L  is perpendicular to every line 
in  P  which passes through  X. 
 

 
 

(Source: http://www.mathsisfun.com/geometry/parallel-perpendicular-lines-planes.html) 
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It is easy to construct examples of lines which do not lie on the plane and are 

perpendicular to just one line in the plane.  For example, take  P  to be the  xy – plane 

in  RRRR
3
 and let  X  be the origin, so that  L  has the form  0v  where  v  is some nonzero 

vector.  Suppose that we choose v to have coordinates (1, 1, 1).  A typical line through 

the origin in  P  consists of all points having the form  (t p, t q, 0), where  p  and  q  are 

not both zero.  However, the only line of this form that is perpendicular to  0 v  is the line 

defined by the equation  y  =  – x. 
 

The algebraic interpretation of a perpendicular line and plane is simple.  If the plane is 

given by the equation  a · z  =  b  and the line and plane meet at the point  x, then  L  is 

the unique line joining  x  and  x + a.   Conversely, if  L  has the form  x  +  V, where  V  

is a 1 – dimensional vector subspace and  x  lies in both  L  and  P, then  P  is defined 

by the equation  a · z  =  a · x, where  a   is a nonzero vector in  V.  Furthermore, if we 

write  P  =  x  +  W  for some  2 – dimensional subspace  W, then  W  is the vector 

subspace of all vectors perpendicular to the vectors in  V, and  V  is the set of vectors 
which are perpendicular to all vectors in  W. 
 

In contrast to the example in the paragraph following the definition, we have the 
following. 
 

Theorem 8.    Suppose we are given a plane  P  and a line  L  not contained in  P  such 
that  L  and  P  meet at the point  x.  Suppose further that there are two distinct lines  M  
and  N  in  P such that  x  lies on both and  L  is perpendicular to both  M  and  N.  Then  
L  is perpendicular to  P. 
 

Proof.    Write  L  =  x + V  where  V  is spanned by the nonzero vector  v.  Let  y  and  

z  be points in  P  such that  x y  and  x z  are distinct lines with  x y  ⊥⊥⊥⊥  L  and  x z  ⊥⊥⊥⊥  L.  

It follows that the vectors  z – x  and  y – x  form a basis for  W.  Suppose now that  w  

is an arbitrary vector in  P  not equal to x.  Then we have  w – x  ∈∈∈∈     W  and hence  
 

w – x    =    a (y – x)  +  b (z – x) 
 

for suitable scalars  a  and  b.  In order to prove the theorem we must show that the 

original line  L  =  x(x + v)  is perpendicular to the line  x w, or equivalently that    

v · (w – x)  =  0.  The hypotheses imply that  v · (y – x)   =   v · (z – x)  =  0,  and 

therefore we have 
 

v · (w – x)   =   v · ( a(y – x) + b(z – x) )   =   av · (y – x)  +  b · (z – x)   = 
 

a · 0  +  b · 0     =    0 
 

which means that  L  is perpendicular to  x w;  since  w  was an arbitrary point of  P  not 

equal to  x, it follows that  L  ⊥⊥⊥⊥  P .� 
 

There are some direct analogs to results in plane geometry. 
 

Theorem 9.    If  P  is a plane and  x  is a point in space, then there is a unique line 
through  x  which is perpendicular to  P. 
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Note that we make no assumption whether or not  x  lies in  P,  and in fact the proof 
splits into two cases, one for points on  P  and the other for points not on  P. 

     
 
 

(Source: http://www.mathsisfun.com/geometry/parallel-perpendicular-lines-planes.html) 
 

Proof.   Write  P  =  q + W  for a suitable vector  q  and  2 – dimensional vector 

subspace  W,  take a basis  { u1, u2 }  for  W, and extend it to a basis for  RRRR
3
  by adding 

a single vector.   Now apply the Gram – Schmidt process to obtain an orthonormal basis 

{ v1, v2, v3 }  such that the first two vectors form an orthonormal basis for  W.    
 

Suppose first that  x ∈∈∈∈     P.   Consider the line  L  =  x v3 ;  if  V  is the vector subspace 

spanned by  v3 ,  then  V  consists of all vectors perpendicular to  W  and vice versa, so 

by the by the algebraic description of perpendicular lines and planes we see that  L  is 
perpendicular to  P  at  x.  The preceding argument proves existence.   
 

To prove uniqueness, suppose that  x y  is an arbitrary line that is perpendicular to  P.  

Then  x y  is perpendicular to  x v1  and  x v2  in particular, so we conclude that  y – x  is 

perpendicular to both  v1  and  v2.  The only way a that linear combination  y – x  =  

c1v1  +  c2v2  +  c3v3   can satisfy this is if the coefficients of  v1  and  v2  are zero, 

which means that y – x is a multiple of v3 .  Therefore  y  must lie in  x + V  =  L. 
 

Suppose now that  x  does  not  lie in P.   Let  z  be an arbitrary point of  P, and expand 

the vector  x – z  using the orthonormal basis in the first paragraph of the proof: 
 

x – z    =    a1 v1  +  a2v2  +  a3v3 
 

Let  u  be the sum of the first two terms of the displayed expression and let w be the 

third term.  Since  x  does not lie in  P  we know that  a3  must be nonzero, and therefore 

it follows that  w  is nonzero.  Set  x0  =  z  +  a1 v1  +  a2v2,  so that  x0 ∈∈∈∈     P,  and 

consider the line  L  =  x0 y.   Once again, the algebraic characterization of 

perpendicular lines and planes shows that  L  and  P  are perpendicular to each other, 
thus completing the proof of existence.  Conversely, suppose now that we are given an 

arbitrary line  M  through  x  which is perpendicular to  P, and let  w0  be the point where 

this line  M  meets  P, and let  w1 =  x – w0 .   The perpendicularity condition implies 

that  w1  is perpendicular to  W.    We then have  

x – z    =    w0  +  w1 
 

where  w0  lies in  W  and  w1  is perpendicular to  W.  This in turn yields  
 

x – z   =   w0  +  w1   =    (b1v1  +  b2v2)  +  b3v3 
 

for suitably chosen scalars.   By the uniqueness of expressions of a given vector in 

terms of a basis, the coefficients of  v1,  v2,  and  v3 in both these expressions must be 
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equal.  But this means that  w0   =   x0  and hence  w1   =   w.  Thus an arbitrary line 
through  x  which is perpendicular to  P  is equal to the line  L  constructed above, 

proving uniqueness.� 
 

Following standard usage, we shall say that two planes  P  and  Q  in  RRRR
3
  are  parallel  

if they have no points in common.  We shall frequently write this as  P || Q.   Once again, 
the algebraic characterization of this is important. 
 

Lemma 10.  Let  P  and  Q  be distinct planes, and write  P  =  x + W  and  Q  =  z + U  

for suitable  2 – dimensional vector subspaces  V  and  U  respectively. Then  P || Q   if 

and only if W  =  U. 
 

Proof.     Suppose first that  P || Q.   If we translate this into a statement about linear 

equations, it means that we have a pair of nontrivial equations of the form  a · x  =  b  

and  c · x  =  d   which have no simultaneous solution.  By the basic results on solutions 
to systems of linear equations, this happens only if  a  and  c  are linearly dependent.  In 

general, the solution spaces for the reduced equation  a · x = 0  and  c · x = 0  are 
merely the subspaces  W  and  U;  if  a  and  c  are linearly dependent, then since they 
are both nonzero we know that each must be a nonzero scalar multiple of the other.  But 

this means that W = U. 
 

Conversely, suppose we are given distinct planes of the form  x + W  and  y + W.   If 

they had some point  z  in common, then by the Coset Property from Section  I.3  we 

would have  x + W   =   z + W   =   y + W,  contradicting the fact that these planes are 

supposed to be distinct.  Therefore we must have  x + W || y + W.� 
 

Theorem 11.   Let  P  and  Q  be distinct planes in space, and let  L  and  M  be distinct 
lines in space.  Then the following hold: 
 

(1) If both  L  and  M  are perpendicular to  P,  then  L || M. 

(2) If  L  ⊥⊥⊥⊥  P  and   L || M,  then  M ⊥⊥⊥⊥  P. 

(3) If  P  ⊥⊥⊥⊥  L  and   Q  ⊥⊥⊥⊥  L,  then  P || Q. 

(4) If  L  ⊥⊥⊥⊥  P  and   P || Q,  then  L ⊥⊥⊥⊥ Q. 
 

   
 

(Source: http://www.mathsisfun.com/geometry/parallel-perpendicular-lines-planes.html) 
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Proofs.    Let V1 and V2 be the 1 – dimensional vector subspaces corresponding to L 

and M respectively, and let W1 and W2 be the 2 – dimensional vector subspaces 

corresponding to P and Q respectively.   
 

Proof of  (1).       In this case both V1 and V2 are the vector subspaces of all vectors 

perpendicular to W1; this implies that V1 = V2, and hence that L || M. 
 

Proof of  (2).       In this case V1 = V2 and V1 is the vector subspace of all vectors 

perpendicular to W1.  If the line M and the plane P have a point in common, this will 

imply that the line and plane are perpendicular, so we need only show that  M and  P 

have a point in common.  Write  M =  x + V1 and P =  y + W1.   As in the preceding 

result, construct an orthonormal basis {v1, v2, v3} such that the first two vectors form an 

orthonormal basis for W1.  It will follow that the third vector gives a basis for V1.  We then 
have  
 

Ccccc1x  –  y   =   a1v1  +  a2v2  +  a3v3 
 

for appropriately chosen scalars a1, a2, a3 .   It follows that  
 

x  –  a3v3   =   y  +  a1v1  +  a2v2 
 

and since the left hand side lies in V1 and the right hand side lies in W1, we have found a 

vector belonging to both subsets.   As noted before, this finishes the proof that M ⊥⊥⊥⊥ P. 
 

Proof of  (3).       Since L is perpendicular to both planes, it follows that V1 is the vector 

subspace of all vectors perpendicular to W1,  and also  V1  =  V2 is the vector subspace 

of all vectors perpendicular to W2.  In particular, this means that  W1 and W2 are both 

describable as the sets of vectors perpendicular to V1, which implies that  W1 = W2.  

Since  P and Q are distinct, by the preceding lemma they must be parallel. 
 

Proof of  (4).       In this case both V1 is the vector subspace of all vectors perpendicular 

to W1, and the latter is equal to W2.  Thus V1 is also the vector subspace of all vectors 

perpendicular to W2, and since this perpendicular subspace is equal to V2 we must have 

V1 = V2.   As before we shall have L ⊥⊥⊥⊥ Q if we can show L and Q have a point in 

common.  Write L =  x + V2  and  P =  y + W2.   Once again we have an 

orthonormal basis {v1, v2, v3} such that the first two vectors form an orthonormal basis 

for W2.  It will follow that the third vector gives a basis for V2.  We then have  
 

x  –  y   =   a1v1  +  a2v2  +  a3v3 
 

for appropriately chosen scalars a1, a2, a3.   Thus  x  –  a3v3   =   y  + a1v1 + a2v2 

and since the left hand side lies in V2  and the right hand side lies in W2, we have a 

vector belonging to both subsets.   As noted before, this finishes the proof that L  ⊥⊥⊥⊥  Q.� 
 

The preceding result has a curious duality property:  If we interchange the roles of lines 
and planes in the statements, we get the same conclusions in some rearranged order.  
Our next result is dual to the earlier one about dropping perpendiculars to a plane 
through a line. 
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Theorem 12.    If L is a line and x is a point in space, then there is a unique plane 
through x which is perpendicular to L. 
 

 
 

Note that we again make no assumption whether or not  x  lies in  L, and in fact the 
proof again splits into two cases, one for points on L and the other for points not on L. 
 

Proof.   Start by writing  L = z + V for some 1 – dimensional vector subspace V.  

Once again we can extend { v } to a basis for RRRR
3
, and in fact we can find an orthonormal 

basis  {w1, w2, w3} such that  w1  is a positive multiple of v.  Let W be the vector 
subspace spanned by the second and third vectors in the orthonormal basis. 
 

Suppose first that  x ∈∈∈∈     L.  Then  L  may be rewritten as  x + V, and the plane  x + W 

will be perpendicular to  L, proving existence.   To verify uniqueness, let  x + U   be an 

arbitrary plane through  x  such that  x  is perpendicular to  L.  Then both  U  and  W are 

the sets of all vectors perpendicular to  V, and hence  W  =  U; thus the perpendicular 

plane is unique in this case. 
 

Suppose now that x does not lie on L.   Then we have z – x   =   a1w1 + a2w2 + a3w3 

for suitable scalars  a1, a2, a3.   We now have  z – a1w1   =   x + a2w2 + a3w3  and if  
y  is the point with these two equal descriptions, we see that y lies on L, it also lies on 

the plane  x + W, and  L  is perpendicular to  x + W, proving existence.  To prove 

uniqueness, suppose that Q is a plane containing x such that  L  ⊥⊥⊥⊥  Q.   If  Q  is given by 

x + U, then both  W  and  U consist of the vectors perpendicular to the span of  w3, and 

therefore we must have  W = U.  This completes the argument when  x  does not lie on 

L.� 
 

We could go much further in this direction, but we shall stop after one more result. 
 

Theorem 13.   Let a and b be distinct points in space.  Then the set of all points that 
are equidistant from  a  and  b  is the plane which is perpendicular to the line ab and 

contains their midpoint ½ (a + b). 
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In analogy with the planar case, the plane described in the theorem is called the 
perpendicular bisector (plane) of a and b. 
 

Proof.  We first write the equidistance equation in vector form || x – a || 

2
   =   || x – b || 

2
.  

Expanding this in the usual way we obtain 
 

|| a || 

2
  –   2 (a · x)   +  || x || 

2
    =    || b || 

2
  –  2 (b · x)   +  || x || 

2
 

 

and if we subtract || x ||
2
 from both sides and rearrange terms this becomes  

  

|| a || 

2
  –  2 (a · x)   =    || b || 

2
  –  2 (b · x). 

 

We may rewrite this further as  2 (b – a) · x   =   || b || 

2
 – || a || 

2
.  It is a simple exercise 

to compute that the midpoint  ½  (a + b) satisfies this equation.   
 

By the preceding paragraph, we know that the set of points equidistant from a and b is 

a plane containing ½ (a + b).  Furthermore, the specific equation for P implies that if L 

is the line which is perpendicular to  P at  ½ (a + b), then L = ½ (a + b)  + V, where 

V is the 1 – dimensional vector subspace spanned by b – a.    
 

To conclude the proof, we need to verify that L = ab.  In fact, direct computation yields 
 

a    =    ½ (a + b)  –  ½ (b – a)  ∈∈∈∈         ½ (a + b)  +  V 
 

b    =    ½ (a + b)  +  ½ (b – a)  ∈∈∈∈         ½ (a + b)  +  V 
 

so that a, b ∈∈∈∈    L and hence L  =  ab.� 
 

We shall conclude this section with a brief discussion of perpendicular planes, starting 
with a quick DEFINITION:  Suppose P and Q are nonparallel planes in space defined by 

the nontrivial linear equations  a · x = b  and   c · x = d respectively.  Then P and Q 

are said to be perpendicular, written  P  ⊥⊥⊥⊥  Q, if and only if a  and c are 
perpendicular.  A rectangular box provides simple physical examples of perpendicular 
planes; at every corner there are three planes which meet, and each of them is 
perpendicular to the other two. 
 

 
 

Before proceeding, we need to check that  this definition does not depend upon the 

choices of equations defining the planes;  in other words, if we are given (possibly) 

different equations  a*· x  =  b*  and   c* · x  =  d  *,  then  a · c  =  0  if and only if   

a* · c*  =  0.   To see this, observe that the only way two nontrivial linear equations can 

define the same plane is if one is obtained from the other by multiplying both sides by a 

nonzero scalar, so that we must have  a*  =   pa  and  b*  =  pb  for some nonzero 

constant  p,  and  c*  =   qa  and  d *  =  qb  for some nonzero constant  q.   Under 

these conditions it follows immediately that  a · c = 0  if and only if  a* ·  c*  =  0. 
 

The synthetic interpretation of perpendicular planes is given by the following result: 
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Theorem 14.  Suppose that P and Q are perpendicular planes in space, suppose that  L 
is their line of intersection, and let x be a point on L.  Then there are lines M and N 

through x such that  (1)  L  ⊥⊥⊥⊥  M and M is contained in P,  (2)  L  ⊥⊥⊥⊥  N and N is 

contained in Q,  (3) we also have M  ⊥⊥⊥⊥  N.  
 

 
 

Corollary 15.   In the setting of the theorem we also have M  ⊥⊥⊥⊥  Q  and  N  ⊥⊥⊥⊥  P.  
 

Proof of Corollary.    By the theorem we know that M is perpendicular to two lines in Q 

through x and N is perpendicular to two lines in P through x.� 
 

Proof of Theorem.    Express the line L  as  x + U, where  U is a  1 – dimensional 

vector subspace spanned by the nonzero vector  u.  Since  x + u  lies on both  P  and  
Q  we have 
 

a · (x + u)   =   b   =   a · x      and      c · (x + u)   =   d   =   c · x 
 

and hence  a · u  =  c · u  =  0,  so that the vectors a,  c  and  u  are nonzero and 

mutually perpendicular.  Let  M  be the line passing through x  and  x + c, and let  N  be 

the line passing through  x  and  x + a.   We then have 
 

a · (x + c)   =   a · x   =   b      and      c · (x + a)   =   c · x   =   d 
 

so that two points of  M  are contained in  P (hence all of  M  is contained in  P) and 
likewise two points of  N  are contained in  Q  (hence all of  N  is contained in  Q).   By 
construction we know that  L,  M  and  N  are three lines which pass through  x  and any 

two of them are perpendicular to each other.�  

  
I I I.2 : Basic results on triangles 

 
 

One of the most important and best known results on a Euclidean triangle  ����ABC  is 

that the sum of the angle measurements   |∠∠∠∠ABC|  +  |∠∠∠∠BCA|  +  |∠∠∠∠CAB|  is equal 

to  180  degrees.  The goal of this section is to develop enough of the theory of triangles 
that we can prove this result. 
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The Exterior Angle Theorem 
 
 

The first result is often presented as a consequence of the result on the angle sum of a 
triangle, but for many reasons it is important in its own right.  For example, the proof is 

valid for geometrical systems that do not necessarily satisfy Playfair’s Postulate  P – 0. 
 

Theorem 1.  (Exterior Angle Theorem)    Suppose we are given triangle ����ABC, and 

let  D  be a point such that  B∗C∗D.  Then  | ∠∠∠∠ACD |  is greater than both  | ∠∠∠∠ABC |  and  

 | ∠∠∠∠BAC | .  

 
 

(Source:  http://www.cut-the-knot.org/fta/Eat/EAT.shtml) 
 

Proof.    Suppose we can show that | ∠∠∠∠ACD |   >   | ∠∠∠∠BAC | .  Let  G be a point such that 

A∗C∗G.   Then by switching the roles of A and B and of D and G, we can also conclude 

that | ∠∠∠∠BCG |   >   | ∠∠∠∠ABC | .   Since | ∠∠∠∠ACD |   =   | ∠∠∠∠BCG | by the Vertical Angle 

Theorem, it follows that | ∠∠∠∠ACD |   >   | ∠∠∠∠ABC | .  Therefore it will suffice to prove the 

inequality | ∠∠∠∠ACD |   >   | ∠∠∠∠BAC | .   
 

Let E be the midpoint of [AC], and let F ∈∈∈∈     [EB
OP

 be the unique point such that d(E, F)  

=  d(E, B).   Then the midpoint condition implies d(E, C)  =  d(E, A), and the Vertical 

Angle Theorem implies | ∠∠∠∠AEB |   =   | ∠∠∠∠CEF |, so that ����AEB   ≅≅≅≅   ����CEF  by  SAS.  It 

follows that | ∠∠∠∠BAE |   =   | ∠∠∠∠ECF |.  Note that ∠∠∠∠BAE   =   ∠∠∠∠BAC and ∠∠∠∠CFE   =   

∠∠∠∠ACF by construction. 
 

Since | ∠∠∠∠BAE |   =   | ∠∠∠∠ACF |, it will suffice to prove that  | ∠∠∠∠ACF |  <  | ∠∠∠∠ACD |,  and we 

shall have the latter if we can show that F lies in the interior of  ∠∠∠∠ACD .   The order 

relations A∗E∗C and F∗E∗B show that A, E and F all lie on the same side of the line 

CD  =  BC.  Similarly, the order relations B∗E∗F and B∗C∗D show that D and F all lie 

on the same side of the line EC  =  AC.   The preceding two sentences combine to 

show that F lies in the interior of  ∠∠∠∠ACD , which by the previous observations implies the 

desired inequalities |∠∠∠∠ACF |  <  | ∠∠∠∠ACD |  and | ∠∠∠∠BAC |  <  | ∠∠∠∠ACD | .� 
 

The preceding result has an extremely large number of important consequences.   We 
limit ourselves here to some that will be needed repeatedly. 
 

Corollary 2.    If ����ABC is an arbitrary triangle, then the sum of any two of the angle 

measures | ∠∠∠∠ABC |, | ∠∠∠∠BCA |  and  | ∠∠∠∠CAB | is less than 180°.   Furthermore, at least 

two of these angle measures must be less than  90°.   
 

Proof.    We use the notation of the preceding theorem.  The argument for the latter and 
the Additivity and Supplement Postulates for angle measures show that  
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| ∠∠∠∠BCA |  +  | ∠∠∠∠CAB |   =    | ∠∠∠∠BCA |  +  | ∠∠∠∠ACF |   =    |∠∠∠∠BCF |   = 
 

180°  –  | ∠∠∠∠DCF |   <   180°. 
 

The other two inequalities | ∠∠∠∠CAB|  +  | ∠∠∠∠ABC |  <  180° and | ∠∠∠∠ABC|  +  | ∠∠∠∠BCA |  <  

180°  follow from the same argument by interchanging the roles of A, B and C.   
 

To prove the second statement, suppose that the measure of at least one of the vertex 

angles is at least 90°.  Without loss of generality, we may assume that | ∠∠∠∠ABC |   ≥   

90°; the other two cases can be shown similarly by permuting the roles of A, B and C.  

By the already proven first sentence in this corollary, we know that | ∠∠∠∠CAB| + | ∠∠∠∠ABC |  

<  180° and | ∠∠∠∠ABC|  + | ∠∠∠∠BCA |  <  180°, so standard algebra implies that both of the 

angle measurements | ∠∠∠∠CAB| and | ∠∠∠∠BCA |  must be less than  180°.���� 
 

Corollary 3.    Suppose we are given triangle ����ABC,  and assume that the two angle 

measures | ∠∠∠∠BCA | and | ∠∠∠∠CAB | are less than 90°.  Let D ∈∈∈∈ AC be such that BD is 

perpendicular to AC.  Then D lies on the open segment (AC).   
 

 
 

Proof.    We know that D cannot be equal to either A or C, because this would imply that 

either | ∠∠∠∠BCA |  or  | ∠∠∠∠CAB | would be equal to 90°.  Thus one of the three points A, C, 

D must be between the other two.  If we have  A∗C∗D,  then the Exterior Angle 

Theorem would imply that | ∠∠∠∠ACB |  >  | ∠∠∠∠CDB |  =  90°, which would contradict our 

assumption that | ∠∠∠∠ACB |  =  | ∠∠∠∠BCA |  <  90°.   Similarly, if we have  D∗A∗C,  then the 

Exterior Angle Theorem would imply that | ∠∠∠∠BAC |  >  | ∠∠∠∠BDA |  =  90°, which would 

contradict our assumption that | ∠∠∠∠CAB |  =  | ∠∠∠∠BAC |  <  90°.  The only remaining 

possibility for the collinear points A, B, D is the betweenness relation A∗D∗C.   
 

Corollary 4.    Suppose we are given triangle ����ABC. Then at least one of the following 
three statements is true: 
 

(1) The perpendicular from A to BC meets the latter in (BC). 

(2) The perpendicular from B to CA meets the latter in (CA). 

(3) The perpendicular from C to AB meets the latter in (AB). 
 

This follows because the measures of at least two vertex angles are less than 90°.���� 
 

One can also use the Exterior Angle Theorem to prove the following complement to the 
Isosceles Triangle Theorem. 
 

Theorem 5.  Given a triangle ����ABC, we have d(A, C)  >  d(A, B) if and only if we have 

| ∠∠∠∠ABC |  >  | ∠∠∠∠ACB | . 
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Less formally, this theorem states that the larger angle is opposite the longer side. 
 

Proof.    Suppose that  d(A, C)  >  d(A, B),  and let D ∈∈∈∈  (AC be such that d(A, D)  =  

d(A, B).  Then d(A, D)  =  d(A, B)  <  d(A, C) implies that D lies on (AC), so that we 

have A∗D∗C.    In particular, it also follows that D lies in the interior of ∠∠∠∠ABC, so that 

we have  | ∠∠∠∠ABC |   >   | ∠∠∠∠ABD | .   The Isosceles Triangle Theorem now implies that  

| ∠∠∠∠ABD |  =  | ∠∠∠∠ADB | ,  and the Exterior Angle Theorem implies that 
  

| ∠∠∠∠ADB |   >   | ∠∠∠∠DCB |   =   | ∠∠∠∠ACB | ; 
 

the final equation holds because the two angles are identical.  If we string all these 

inequalities and equations together, we conclude that   | ∠∠∠∠ABC |   >   | ∠∠∠∠ACB | . 
 

Similarly, if we have  d(A, C)  <  d(A, B),  then by interchanging the roles of B and C in 

the preceding argument we can conclude that that   | ∠∠∠∠ABC |  <  | ∠∠∠∠ACB | . 
 

Suppose now that we have the converse situation with that   | ∠∠∠∠ABC |  >  | ∠∠∠∠ACB | .  If 

d(A, C)  =  d(A, B),  then by the Isosceles Triangle Theorem we obtain the 

contradictory conclusion  | ∠∠∠∠ABC |  =  | ∠∠∠∠ACB | .  Likewise, if  d(A, C)  <  d(A, B),  then 

by the preceding paragraph we have  | ∠∠∠∠ABC |  <  | ∠∠∠∠ACB | , which again contradicts our 

assumption.  Therefore  d(A, C)  >  d(A, B)  is the only alternative consistent with the 

condition   | ∠∠∠∠ABC |  >  | ∠∠∠∠ACB | .���� 
 
 

Some algebraic proofs 
 
 

Up to this point we have used synthetic methods to prove our results.  However, there 
are also some results which a more easily proved using algebraic methods, and before 
proceeding to the goal of this section we shall present them.    
 

Theorem 6.  (Classical Triangle Inequality)    Given ����ABC, we have the inequality 

d(A, C)  <   d(A, B)  +  d(B, C). 
  

Proof.     By the version of the Triangle Inequality in Section I.1, we know that the left 
hand side is less than or equal to the right hand side, and equality holds only if A, B and 
C are collinear.  Since they are not, we must have strict inequality in this situation.���� 
 

The next result is generally regarded as one of the most important in all of Euclidean 
geometry. 
 

Theorem 7.  (Pythagorean Theorem)    If  ����ABC has a right angle at  B, so that 

AB ⊥⊥⊥⊥ BC, then   d(A, C) 
2
     =     d(A, B) 

2
  +  d(B, C) 

2
. 
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Proof.   We know that d(A, C) 

2
  =  || C – A || 

2
, and since  

 

(C – A)    =    (C – B)  +  (B – A) 
 

the expression || C – A || 

2
  is equal to  

 

|| C – B || 

2
  +  2(C – B) · (B – A)   +  || B – A || 

2
. 

 

Since AB ⊥⊥⊥⊥ BC,  we know that (C – B) · (B – A)   =  0,  and therefore the right hand 

side reduces to  || C – B || 
 

2
  +  || B – A || 

2
   =   d(A, B) 

2
  +  d(B, C) 

2
, as required.���� 

 

In fact, the argument above yields the following stronger conclusion: 
 

Theorem 8.  (Law of Cosines)    Given ����ABC, we have  
 

d(A, C)
2
   =   d(A, B)

2
  +  d(B, C)

2
  =  2 d(A, B) d(B, C) cos | ∠∠∠∠ABC|. 

 

Proof.   In the preceding argument, observe that in general   (C – B) · (B – A) is equal 

to d(A, B) d(B, C) cos | ∠∠∠∠ABC| by the definition of angle measurement.���� 
 

This is also a good place to include a proof for the trigonometric Law of Sines.  The 
argument we shall give is purely algebraic, and unfortunately as such it is not well 
motivated.  More geometrical proofs (which also relate the common ratio to other 
properties of a triangle) appear in the following online sites: 

 

http://www.cut-the-knot.org/proofs/sine_cosine.shtml#law 
 

http://mcraefamily.com/MathHelp/GeometryLawOfSinesProof.htm 
 

[ Note:    The proofs in these references use concepts that have not yet been introduced 

or are not in these notes; however, some key points appear in Exercise I I I.4.4.] 
 

Theorem 9.  (Law of Sines)    Given ����ABC, let the lengths of its sides be given by 
 

d(B, C)   =   a,   d(C, A)   =   b,   and    d(A, B)   =   c, 
 

and similarly let the measures of its angles be given by given by 
 

| ∠∠∠∠CAB |    =   αααα,   | ∠∠∠∠ABC |    =   ββββ,   and   | ∠∠∠∠ACB |   =   γγγγ. 
 

Then we have the following: 
 

 
 

The only property of the sine function that we shall need is that, for the values of interest 

to us,  sin θθθθ  is equal to the nonnegative square root of 1  –  cos 

2
 θθθθ    .  The notation of 

the theorem is completely illustrated in the diagram below. 
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Proof of theorem.     If we can prove the first equation, then the second will follow by 

interchanging the roles of  A  and  C  (and hence also the roles of  a  and  c, as well as 

the roles of  αααα and  γγγγ).  Note that all the lengths a,  b,  c are positive. The first equation 

in the Law of Sines is equivalent to b sin αααα    =    a sin β,β,β,β, and if we multiply both sides of 

the latter equation by c we obtain another equivalent form: 
 

cb sin αααα    =    ca sin ββββ    
    

Squaring both sides of the equation above, we see that it is equivalent to c
2 

b
2

 sin
2
 αααα    

=    c
2 

a
2

 sin
2
 ββββ, and using the standard identity relating the sine and cosine functions 

we get the following equivalent statement: 
 

c
2 

b
2

 ( 1  –  cos
2
 αααα    )    =    c

2 
a

2
 ( 1  –  cos

2
 ββββ     ) 

 

The latter may be written in terms of  A,  B and  C  as  
 

|| A – B || 
2

 || A – C || 
2
  –  [(B – A) · (C – A)] 

2
    = 

 

|| A – B || 
2

 || B – C || 
2
  –  [(C – B) · (A – B)] 

2
 

 

and if we make the substitutions  x  =  C – B ,  y  =  A – C ,   x + y  =  A – B ,  then 

we can further rewrite the equation above in the following form: 
 

|| x + y || 
2

 || y || 
2
  –  [(x + y) · y] 

2
    =    || x + y || 

2
 || x || 

2
  –  [x · (x + y)] 

2
 

 

If we expand the left and right hand sides of this equation, we see that the preceding 

equation is equivalent to the following one: 
 

|| x || 
4
 + 2 (x · y) || x || 

2
  +  || x || 

2
 || y || 

2
  –  [ || x || 

2
 + (x · y) ] 

2
    = 

 

|| y || 
4
 + 2 (x · y) || y || 

2
  +  || x || 

2
 || y || 

2
  –  [ || y || 

2
 + (x · y) ] 

2
 

 

If we now simplify both sides, we find that each is equal to || x || 
2
 || y || 

2
  –  (x · y) 

2
 , and 

therefore we know that the equation above (and all the preceding ones) are true.  In 

particular, this yields  b sin αααα   =   a sin β,β,β,β, which is equivalent to the Law of Sines.���� 
 

The techniques which yield the Laws of Sines and Cosines also imply the standard 
formulas for trigonometric functions in terms of right triangles.  These formulas are 
generally used to define the sine and cosine functions in precalculus courses, but since 
our definition of these functions relies upon results from calculus, we have to verify that 
these standard formulas are valid. 
 

Theorem 9A.  Suppose that we are given ����ABC as above with a right angle at C.  

Then   cos | ∠∠∠∠ BAC|   =   b/c   and   sin | ∠∠∠∠ BAC|   =   a/c.  
 

Proof.  By the Law of Cosines we have 
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a
2
    =    b

2
  +  c

2
  –  2 b c  cos | ∠∠∠∠ BAC| 

 

and if we substitute the Pythagorean formula  c
2
   =   a

2
  +  b

2 
into the right hand side 

and simplify, we obtain the equation 
 

0    =    2 b
2
  –  2 b c  cos | ∠∠∠∠BAC| . 

 

Solving this for  cos | ∠∠∠∠ BAC|, we see that  cos | ∠∠∠∠ BAC|  =  b/c.  
 

To derive the formula for   sin | ∠∠∠∠BAC|, we note that the latter and a/c are both positive, 

so it suffices to show that   sin 

2
 | ∠∠∠∠BAC|  =  a

2/c2
.   But now we have 

 

sin 

2
 | ∠∠∠∠ BAC|   =   1  –  cos 

2
 | ∠∠∠∠ BAC|   =   1  –   (b

2/c2
)   =    (c

2 –  b
2/c2

). 
 

By the Pythagorean formula we know that  c
2  –  b

2
   =   a

2
,
  
and therefore the right 

hand side simplifies to a
2/c2

,  and hence  sin 

2
 | ∠∠∠∠ BAC|  =  a

2/c2
  as required.���� 

 
 

Transversals, parallel lines and angle sums of triangles 
 
 

We shall conclude this section with a return to synthetic methods.  As stated earlier, the 
goal is to prove the standard result about the sums of the measures of the vertex angles 
in a triangle. 
 

Definition.  Given two coplanar lines L and M, a third line N in the same plane is called 
a transversal to L and M if it has a point in common with both of them; since the lines 
are supposed to be distinct, it follows that N has exactly one point in common with each 
of L and M. 
 

The picture below describes a typical example. 
 

 
 

In elementary geometry one has several notions of angles associated to a pair of lines 
cut by a transversal. 
 

Definitions.  Let L and M be distinct lines, and let N be a transversal meeting them in 
the points B and A respectively.  Let C and F be points of M and L respectively which lie 
on the same side of N, and let D and E be points of L and M respectively which lie on 
the opposite side of N. 
 

 
 

The pairs of angles { ∠∠∠∠CAB, ∠∠∠∠ABD } and { ∠∠∠∠EAB, ∠∠∠∠ABF } are said to be pairs of 

alternate interior angles.   Furthermore, if we have X∗A∗B and  Y∗B∗A , then the  
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pairs of angles {  ∠∠∠∠YBF, ∠∠∠∠XAE } and { ∠∠∠∠XAC, ∠∠∠∠YBD } are said to be pairs of alternate 

exterior angles.   Finally, the four pairs of angles { ∠∠∠∠XAE, ∠∠∠∠ABD = ∠∠∠∠XBD } ,  { ∠∠∠∠XAC, 

∠∠∠∠ABF  = ∠∠∠∠XBF } , { ∠∠∠∠ YBF, ∠∠∠∠BAC = ∠∠∠∠YAC } , and { ∠∠∠∠YBD, ∠∠∠∠YAE  = ∠∠∠∠BAE } are 

said to be pairs of corresponding angles.   
 

The box labeled “Parallel Lines” at the site  
 

http://www.mathsisfun.com/geometry/alternate-interior-angles.html 
 

gives interactive visual examples for all these types of angle pairs.  
 

The next two results characterize Euclidean parallel lines in terms of the measures of 
their alternate interior angle pairs.  The reasons for stating the two parts separately will 

become apparent in Unit V of these notes. 
 

Proposition 10.    Suppose we are given the setting and notation above.  If the 
measures of one pair of alternate interior angles are equal, then the lines L and M are 

parallel. 
 

Proof.    We first claim that the measures of the other pair of alternate interior angles are 

also equal.  For if, say, we have | ∠∠∠∠CAB |  =  | ∠∠∠∠ABD | , then the Supplement Postulate 

implies that  | ∠∠∠∠ABF |  =  180°  –  | ∠∠∠∠ABD |  =  180°  –  | ∠∠∠∠CAB |  =  | ∠∠∠∠EAB | .  
Suppose now that the lines L and M are not parallel, and let G be the point where they 
meet.  The point G cannot lie on the line N, for this would imply that G lies on all three 
lines, and we have already assumed that L and M meet N in different points.  Suppose 

that G lies on the same side of N as C and F.  Then we have ∠∠∠∠ABF  =  ∠∠∠∠ABG and also 

G∗A∗E  (because E and G lie on opposite sides of N), so that | ∠∠∠∠EAB |  >  | ∠∠∠∠ABF |  by 

the Exterior Angle Theorem applied to ����ABG; but this contradicts our assumptions and 
observations about alternate interior angles, so it follows that G cannot lie on the same 
side of N as C and F.   Suppose now that there is a common point G on the same side of 

N as D and E.   Then we have ∠∠∠∠ABD  =  ∠∠∠∠ABG and also G∗A∗C  (because C and G lie 

on opposite sides of N), so that | ∠∠∠∠CAB |  >  | ∠∠∠∠ABD |  by the Exterior Angle Theorem 

applied to ����ABG; but this contradicts our assumptions and observations about 
alternate interior angles, so it follows that G also cannot lie on the same side of N as D 
and E.  Since N and its two sides combine to form the entire plane containing all the 
points and lines under consideration, it follows that there is no place in the plane that can 
contain a common point of L and M, and therefore these lines must be parallel.����  
 

Proposition 11.    Suppose we are again given the setting and notation above (in 
particular, let A and B be the points where N meets M and L respectively), but this time 

assume the lines L and M are parallel.  If C and D are points of M and L respectively 

which lie on opposite sides of N , then | ∠∠∠∠CAB |  =  | ∠∠∠∠ABD |. 
 

Proof.    By the Protractor Postulate we know there is a unique ray [AG such that the 

corresponding open ray (AG lies on the same side of N as C and | ∠∠∠∠GAB |  =  | ∠∠∠∠ABD |.  
By the previous proposition it follows that GA || L.   
 

By our hypotheses we also know that M is a line through A which is parallel to L.  Since 

there is only one such line by Playfair’s Postulate, it follows that M  =  AG.  But this 

means that [AG and [AC are identical and hence that | ∠∠∠∠CAB |  =  | ∠∠∠∠ABD |.����   
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We can summarize the preceding two results by saying that if two lines meet a 
transversal in separate points, then the lines are parallel if and only if the alternate 
interior angles have equal measurements.���� 
 

Corollary 12.    Suppose in the setting above we have L || M.  Then for each pair of 
alternate interior angles, alternate exterior angles, and corresponding angles, the two 

angles in the given pair have the same angular measure. 
 

Proof.    We have already established the result for the two pairs of alternating interior 
angles, and we shall consider the other types of pairs according to their types.   
 

Alternate exterior angles.  Three applications of the Vertical Angle Theorem yield the 
following chain of equations:     
 

|∠∠∠∠YBF|   =   |∠∠∠∠ABD|   =   |∠∠∠∠CAB|   =   |∠∠∠∠XAE| 
 

Similar considerations also yield the following chain of equations: 
 

|∠∠∠∠XAC|   =   |∠∠∠∠EAB|   =   |∠∠∠∠ABF|   =   |∠∠∠∠YBD| 
 

Corresponding angles.  Successive applications of the Vertical Angle Theorem, the 

second result on alternate interior angles, and the fact that  ∠∠∠∠SUV  =  ∠∠∠∠TUV  if  T ∈∈∈∈  

(US , combine to yield the following chain of equations: 
 

|∠∠∠∠XAE|   =   |∠∠∠∠CAB|   =   |∠∠∠∠ABD|   =   |∠∠∠∠XBD| 
 

Similar considerations also yield the following three chains of equations: 
 

|∠∠∠∠XAC|   =   |∠∠∠∠EAB|   =   |∠∠∠∠ABF|   =   |∠∠∠∠YBF| 
 

|∠∠∠∠ YBF |   =   |∠∠∠∠ABD|   =   |∠∠∠∠BAC|   =   |∠∠∠∠XAC| 
 

|∠∠∠∠YBD|   =   |∠∠∠∠ABF|   =   |∠∠∠∠BAE|    =   |∠∠∠∠YAE| 
 

These equations cover all the pairs of alternate interior and corresponding angles listed 
in the definition.���� 
  

We are finally ready to state and prove the original objective of this section. 
 

Theorem 13.    Given ����ABC, we have | ∠∠∠∠ABC |   +   | ∠∠∠∠BCA |   +   | ∠∠∠∠CAB |   =   

180°.    
 

Proof.    We shall follow the standard argument, but we shall also verify crucial facts that 
are often not justified explicitly at the high school level. 
 

Let L be the unique line through A such that L || BC.  Then L contains points on both 

sides of  AC, so let  D ∈∈∈∈  L  lies on same side of  AC  as  B.  By the Crossbar Theorem 

we know that  (CD  meets  (AB)   at some point X.   
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Since  A∗X∗B  holds, it follows that X lies on the same side of  AD = L  as  C  and also 

lies on the same side of  BC as  A.  Also, since  AD  =  L || BC, it follows that B and C 

also lie on the same side of AD = L.   Since B, C and X lie on the same side of  L = AD 

we must have  C∗X∗D.  It follows that  C  and  D  must lie on opposite sides of  AB.  

Likewise,  C∗X∗D  and  A∗X∗B  imply that  B, X and D must lie on the same side of  

AC.  Finally, since  D∗A∗E  holds, we know that E  must lie on the opposite side of  AC  

as  B, X  and  D. 
 

By the second proposition on alternate interior angles, we have  | ∠∠∠∠DAB|  =  | ∠∠∠∠ABC| 

and  | ∠∠∠∠EAC|  =  | ∠∠∠∠ACB|.  Now we know that  B  and  D  lie on the same side of  AC, 

and since  AD  =  L || BC  we also know that  B  and  C  lie on the same side of  AD.  

Therefore  B  lies in the interior of  ∠∠∠∠DAC, so that we have  
 

| ∠∠∠∠DAC|   =   | ∠∠∠∠DAB|  +  | ∠∠∠∠BAC|   =   | ∠∠∠∠ABC|  +  | ∠∠∠∠BAC|. 
 

On the other hand, we also have 
 

| ∠∠∠∠DAC|   =   180°  –  | ∠∠∠∠EAC|   =   180°  –   | ∠∠∠∠ACB|. 
 

If we combine the two displayed equations we obtain 
 

| ∠∠∠∠ABC|  +  | ∠∠∠∠BAC|   =   | ∠∠∠∠DAC|   =   180°  –   | ∠∠∠∠ACB| 
 

and if we rearrange terms we obtain the desired formula  
 

| ∠∠∠∠ABC|  +  | ∠∠∠∠BAC|  +  | ∠∠∠∠ACB|    =   180°.���� 
 

The following picture may be helpful for remembering the proof of Theorem 13; in the 
drawing below, two angles turn out to have equal measurements if the regions near their 
vertices are colored with the same color. 
 

 
We shall now give four standard consequences of Theorem 13: 
 

Corollary 14.  (Strengthened Exterior Angle Theorem)   Given ����ABC, let D be a point 

such that  B∗C∗D.  Then we have  | ∠∠∠∠ACD |  =  | ∠∠∠∠ABC |  +  | ∠∠∠∠BAC | . 
 

Proof.    By the Supplement Postulate we have   | ∠∠∠∠BCA |   +   | ∠∠∠∠ACD |   =   180°, and 

hence we have | ∠∠∠∠ABC |   +   | ∠∠∠∠BCA |   +   | ∠∠∠∠CAB |   =   | ∠∠∠∠BCA |   +   | ∠∠∠∠ACD | .   If 

we subtract  | ∠∠∠∠BCA |  from both sides, we obtain the desired equation.����  
 

Corollary 15.  (“Third Angles Are Equal” Theorem)     Suppose we have two ordered 

triples of noncollinear points (A, B, C) and (D, E, F) satisfying | ∠∠∠∠ABC |  =  | ∠∠∠∠DEF |     and     

| ∠∠∠∠CAB |  =  | ∠∠∠∠FDE | .     Then we also have     | ∠∠∠∠ACB |  =  | ∠∠∠∠DFE | . 
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Proof.    By the theorem we have | ∠∠∠∠ACB |   =   180°  –  | ∠∠∠∠ABC |  –  | ∠∠∠∠CAB | and 

likewise  | ∠∠∠∠DFE |   =   180°  –  | ∠∠∠∠DEF |  –  | ∠∠∠∠FDE | .   Since we are assuming that   

| ∠∠∠∠ABC |  =  | ∠∠∠∠DEF |     and  | ∠∠∠∠CAB |  =  | ∠∠∠∠FDE | , it follows that we must also have  

| ∠∠∠∠ACB |   =   180°  –  | ∠∠∠∠ABC |  –  | ∠∠∠∠CAB |  =  180°  –  | ∠∠∠∠DEF |  –  | ∠∠∠∠FDE |   =    

| ∠∠∠∠DFE | , which is what we wanted to prove.���� 
 

Corollary 16.  (AAS triangle congruence)    Suppose we have two ordered triples of 

noncollinear points (A, B, C) and (D, E, F) satisfying the conditions     d(B, C)  =  d(E, F) ,     

| ∠∠∠∠ABC |  =  | ∠∠∠∠DEF | ,    and     | ∠∠∠∠CAB |  =  | ∠∠∠∠FDE | .     Then ����ABC   ≅≅≅≅   ����DEF. 
 

Proof.    By the preceding corollary we know that | ∠∠∠∠ACB |  =  | ∠∠∠∠DFE | .  Therefore we 

can apply ASA to conclude that ����ABC   ≅≅≅≅   ����DEF.���� 
 

A much different proof of this result is mentioned in Section V.2 (and is listed as an 
exercise for that section). 
 

Corollary 17.    An isosceles triangle ����ABC is equilateral if and only if (at least) one of 

the angle measurements | ∠∠∠∠ABC |,  | ∠∠∠∠BCA | or  | ∠∠∠∠CAB | is equal to  60°,  and in this 

case ALL of the angle measurements above are equal to  60°.   
 

Proof.    Since an equilateral triangle is equiangular, we know that if ����ABC is 

equilateral then | ∠∠∠∠ABC |  =  | ∠∠∠∠BCA |  =  | ∠∠∠∠CAB | .  If we substitute this into the 

equation | ∠∠∠∠ABC |   +   | ∠∠∠∠BCA |   +   | ∠∠∠∠CAB |   =   180°, we see that  3 | ∠∠∠∠ABC |  =  

180°, so that | ∠∠∠∠ABC |  =  60°.   
 

To prove the converse, first note that it suffices to consider the case where d(A, C)  =  

d(A, B) ,     for the remaining cases can be retrieved by interchanging the roles of the three 
vertices.  Under the condition in the preceding sentence, there are two cases depending 

upon whether | ∠∠∠∠CAB |  =  60° or | ∠∠∠∠ABC |  =  | ∠∠∠∠BCA |  =  60°.  In both cases we 

have 2 | ∠∠∠∠ABC |  +  | ∠∠∠∠CAB |   =   180°.   Therefore  | ∠∠∠∠CAB |  =  60° implies that   

| ∠∠∠∠ABC |  =  | ∠∠∠∠BCA |  =  60°, and conversely | ∠∠∠∠ABC |  =  | ∠∠∠∠BCA |  =  60° implies   

| ∠∠∠∠CAB |  =  60°.  In both cases it follows that ����ABC is equiangular, and hence 

����ABC must also be equilateral.���� 

 
I I I.3 : Convex polygons 

 
 
Triangles are the simplest examples of plane figures known as polygons.  One way of 

defining the latter is to describe them as finite unions of closed segments Sk  =  [Ak Bk] 

(where n  ≥  3 and k  = 1, … , n) satisfying the following three conditions: 
 

1. If k  ≠   j  then the intersection of Sj and Sk is either empty or a common 

endpoint. 

2. If 2  ≤   k  ≤   n  then  Ak  =  Bk – 1 , and also Bn  =  Ak. 



 109 

3. For all k the sets { Ak, Bk  = Ak  + 1, Bk  + 1 } and { Ak  –  1, B k  –  1  =  Ak, Bk } are 

noncollinear, where we take An + 1 to be A 1 and B 0 to be Bn. 
 

The endpoints of the segments are called vertices of the polygon. 
 

 
 

Five examples with  n  =  4, 5, 6  and  7  are illustrated below (for two or these 

examples we have  n  =  6).  The labels for the vertices are omitted. 
 

 
 

We often describe this configuration as polygon A 1 … An or B 1 … Bn or something 

similar.   Frequently it is useful to define  Ck  =   Ak  and  Bk  for arbitrary integers  k  by  

Ck  =   Cs  where  C0  =   Cn, and more generally  s  is given by the long division 

equation  k  =   qn  +  s,  where  0  ≤   s  ≤   n – 1.   In other words, the vertex 

sequences Ck are  periodic  and their periods are equal to n.  If there are n vertices we 

usually say that the polygon is an n – gon, and for small values of n there are often 

special names for these objects: 
 

n NAME OF POLYGON 

3 triangle 

4 quadrilateral 

5 pentagon 

6 hexagon 

7 heptagon 

8 octagon 

9 nonagon 

10 decagon 

12 dodecagon 

15 pentadecagon 
 
 

In elementary Euclidean geometry, one special type of polygon is particularly important. 
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Definition.    Let  A 1 … A n be an n – gon.   We shall say that  A 1 … A n is a convex 

polygon if the following hold: 
 

1. No three vertices are collinear. 

2. For each  k  =  1, … , n  all of the vertices except  A k  and  A k + 1 lie on the 

same side of the line  A k A k + 1 (recall our previous numbering convention that 

A n + 1  =  A 1). 
 

In the picture above, the quadrilateral and hexagon on the right (in green) are convex, 
but the pentagon and heptagon (in red) and the hexagon in the middle (in purple) are 
not; observe that two edges of the latter are collinear, but these edges do not have any 

endpoints in common.  Here are some additional examples, all of which are convex: 
 

   

(Source:  http://mathworld.wolfram.com/RegularPolygon.html) 
 

Note that if  n  =  3  then the second condition in the definition is vacuously true and 

hence every triangle is a convex polygon.  However, for all larger values of n there are 

polygons that are not convex polygons; examples for  n  =  4   and  n  =  11  are 
depicted below. 
 

            
 

The terminology “convex polygon” is unfortunately at odds with our earlier definition of 
“convex set,” but unfortunately both usages are too well established to change.  
However, there is an important connection between the two concepts. 
 

Definition(s).  If  X, Y and  Z  are noncollinear points and lie in the plane  P, then  

H(XY, Z)  is the half plane of all points in P which lie on the same side of XY as Z.  

Given a convex polygon  A 1 … A n  its  interior, written  Int A 1 … A n , is the intersection 

of all half planes  H(A k A k + 1, A k + 2), where A k + m is defined for all integers  k + m  by 

the previously stated conventions.  Note that  H(A k A k + 1, A k + 2)   =   H(A k A k + 1, A j )  

for all  j such that  A j  is not equal to  A k  or  A k + 1 .  In the picture below, the interior of 

A 1A 2A 3A 4 is the shaded region. 
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Since each half plane is a convex set and the intersection of convex sets is convex, it 

follows that  Int A 1 … A n  is also a convex set.   Not surprisingly, if  n  =  3  then this 
definition of interior reduces to the previous definition for the interior of a triangle. 

 
Coordinate geometry and interiors of convex polygons 

 
 

When the interior of a triangle was defined in Section I I.3, a description of this region in 
terms of vector geometry was given in terms of barycentric coordinates.   Since we now 
have a similar definition of interiors for convex polygons, it is natural to describe the 
corresponding description in terms of coordinate (or vector) geometry, and we shall now 
explain how to do so. 
 

Suppose that  n  ≥  3 and  a 1, … , a n  (in the given order) form the vertices for a 

convex  n – gon in  RRRR
2
; we shall use the previously introduced cyclic numbering 

convention to define  a k  for other integral values of  k, so that  a k   =   a k + n  for all  k.  

For each  k  there is a linear equation  u i · x i  =  b i which defines the line  a i – 1 a i, and 

by the definition of a convex polygon we know that the n – 2  numbers  u i · a j  –  b i  

(where  j  =  i  + 1 , … , i + n – 2)  all have the same sign.  Replacing  u i  and  b i 

with their negatives if necessary, we may assume that this sign is always positive.  

Therefore the interior of the convex polygon  A 1 … A n  is defined analytically by the 

finite set of strict linear inequalities  u i · x i  >  b i . 
 
 

Convex quadrilaterals 
 
 

Convex quadrilaterals are probably the most important class of polygons aside from 
triangles, and two types receive considerable attention in elementary geometry: 
 

1. Parallelograms of the form  ABCD, where  AB||CD  and  AD || BC;  in fact, if 
the parallelism conditions hold for the vertices of a polygon ABCD then it is 
automatically convex because the parallelism properties imply that the points 
C and D are on the same side of AB, the points A and D are on the same side 
of BC, the points A and B are on the same side of CD, and the points B and C 
are on the same side of AD. 

 

2. Trapezoids of the form  ABCD, where (say)  AB || CD but AD is not 
(necessarily) parallel to BC.  In these examples the condition for a convex 
quadrilateral reduces to having the points B and C on the same side of AD, 
and the points A and D on the same side of BC (by parallelism the other two 
conditions are automatically true). 
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The following property of convex quadrilaterals is frequently used in elementary 
geometry without noting the need for a logical proof: 

Proposition 1.    Suppose that A, B, C and D form the vertices of a convex 
quadrilateral.  Then the open diagonal segments (AC) and (BD) have a point in 

common. 

Proof.    First observe that the lines AC and BD are distinct, for otherwise the four 
vertices would be collinear.  By definition, C and B lie on the same side of AD and C and 

D lie on the same side of AB, so that C lies in the interior of ∠∠∠∠DAB.  Therefore the 
Crossbar Theorem implies that the open ray (AC has a point X in common with the open 
segment (BD).    

Similarly, A and D lie on the same side of BC and A and B lie on the same side of CD, 

so that A lies in the interior of ∠BCD.  Therefore the Crossbar Theorem implies that 

the open ray (CA has a point Y in common with the open segment (BD).    

Since the two lines AC and BD have at most one point in common, it follows that X and 

Y must be identical and this point must lie on both (BD) and (AC) .� 

With this result at our disposal, we can derive the basic properties of parallelograms. 

Proposition 2.    Suppose that A, B, C and D form the vertices of a parallelogram.  Then 

we have | ∠∠∠∠ADC |  =  | ∠∠∠∠CDA | , d(A, B)  =  d(C, D) ,  d(A, D)  =  d(B, C) , and | ∠∠∠∠BCD |

=  | ∠∠∠∠DAB | . 

(Source:  http://o.quizlet.com/i/ahzOyuhTFBgN--BkRypqkA_m.jpg) 

Proof.    Let X be the point where the diagonal segments (BD) and (AC) meet.  It follows 
that B and D lie on opposite sides of AC, and similarly A and C lie on opposite sides of 

BD.  Therefore {∠∠∠∠DCA, ∠∠∠∠CAB} and {∠∠∠∠DAC, ∠∠∠∠ACB} are pairs of alternate interior 
angles.    

By ASA we then have ����BAC   ≅≅≅≅   ����DCA.  In particular, this implies that  | ∠∠∠∠ADC |  =
| ∠∠∠∠CDA | ,  d(A, B)  =  d(C, D) ,  and   d(A, D)  =  d(B, C) .  The other assertion of the
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theorem, namely | ∠∠∠∠BCD |  =  | ∠∠∠∠CAB | , can be proven by cyclically interchanging the 
roles of the vertices in the proofs; specifically, we let B, C, D, A take the roles of A, B, C, 

D respectively.� 
 

Corollary 3.  In the setting of the preceding result we have  
 

| ∠∠∠∠ADC |   =   | ∠∠∠∠ABC |   =   180°  –  | ∠∠∠∠DAB |   =  180°  –  | ∠∠∠∠DCB | . 
 

Proof.   Let  E  be a point such that A∗D∗E.  Then by the results on corresponding 

angles and the Supplement Postulate we know that 
 

| ∠∠∠∠DAB |   =    | ∠∠∠∠EDC |   =  180°  –  | ∠∠∠∠ADC | 
 

and the remaining conclusions follow from this equation and the results of the preceding 

theorem.� 
 

Proposition 4.    Suppose that A, B, C and D form the vertices of a convex 

quadrilateral, and assume further that AB || CD and d(A, B)  =  d(C, D) .     Then the 

convex quadrilateral ABCD is a parallelogram. 
 

Proof.    Once again, let X be the point where the diagonal segments (BD) and (AC) 
meet.   It again follows that B and D lie on opposite sides of AC, and consequently 

{∠∠∠∠DCA, ∠∠∠∠CAB}  is a pair of alternate interior angles.   Since d(A, B)  =  d(C, D) ,    by 

SAS we have ����BAC   ≅≅≅≅   ����DCA.  Therefore we also have | ∠∠∠∠DAC |  =  | ∠∠∠∠ACB| .   
Since we already know that B and D lie on opposite sides of AC, it follows that we must 

also have AD || BC.� 
 

Definition.   A rectangle is a convex quadrilateral ABCD such that AB ⊥⊥⊥⊥ BC, BC ⊥⊥⊥⊥ CD, 

CD ⊥⊥⊥⊥ AD and AB ⊥⊥⊥⊥ AD.  It follows that a rectangle is automatically a parallelogram; 
furthermore, one can show that the fourth perpendicularity condition is redundant (this is 
left as an exercise to the reader).  In particular, it follows immediately that the opposite 
sides of a rectangle have equal lengths. 
 

The following consequence of the preceding sentence is very important geometrically. 
 

Proposition 5.    Let  L  and  M be parallel lines.  Let  X  be a point on one of these 
lines, let Y be a point of the other line such that XY is perpendicular to  L  and  M, let  Z 
be another point on one of these lines, and let  W be a point of the other line such that 

ZW  is perpendicular to  L and  M.  Then we have d(X, Y)  =  d(Z, W).  
 

In everyday language, two parallel lines are everywhere equidistant.   The common 

value of the numbers  d(X, Y), d(Z, W), etc. is frequently called the distance between L 
and M. 
 

Proof.   Without loss of generality, we may as well assume that X lies on L; the proof in 

the case X ∈∈∈∈ M follows by reversing the roles of L and M in the argument which follows.   
 

Since X ∈∈∈∈ L we also must have Y ∈∈∈∈ M.  There are now a few separate cases.  Let us 

dispose of the case where  Z  =  Y first.  In this situation we also have  W  =  X and 
hence the distance equation is a triviality.   
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Suppose next that  Z lies on  L and is not equal to  X; we claim that  W is also not equal 

to Y, for if  W  =  Y then by uniqueness of perpendiculars to a line at a point we would 

have that X, Y and Z would be collinear.  This is impossible because the collinearity 
relationship would mean that the line  XZ  is perpendicular to  M, while the hypothesis 

implies that  L  =  XZ  is parallel to  M.   Since two lines perpendicular to a third line are 
parallel, it follows that  XY || ZW, and hence  X, Y, W  and  Z form the vertices of a 
parallelogram (in that order).  Therefore the basic result on parallelograms implies that 

d(X, Y)  =  d(Z, W). 
 

Suppose now that  Z lies on  M; by an earlier part of the argument we know the result 

holds if  z  =  y, so suppose now that they are distinct.  We shall apply the reasoning of 

the previous paragraph systematically.  First of all, if  W  is the point on  L  such that  ZW 
is perpendicular to  L  and  M, then this reasoning implies that W is not equal to X.  It 
follows now that  XZ || YW, and hence  X, Z, W  and  Y  form the vertices of a 
parallelogram (in that order).  Therefore the basic result on parallelograms implies that  

d(X, Y)  =  d(Z, W).� 
 

Of course, there are also other standard definitions of special types of parallelograms:  A 
rhombus is a parallelogram in which the lengths of all four sides are equal, and one can 
define a square to be a quadrilateral that is both a rectangle and a rhombus. 
 

We shall only mention one property of trapezoids in these notes; additional facts about 
them are presented in the exercises. 
 

Proposition 6.  Suppose that A, B, C and D form the vertices of a convex quadrilateral 

such that AB || CD.  Then   | ∠∠∠∠DAB |  + | ∠∠∠∠ADC |   =   180°.   
 

Proof.   The argument is exactly the same as the one presented in the previous 

corollary.� 

 
Vector geometry and the properties of parallelograms 

 
In the preceding discussion we have synthetic proofs for several basic theorems about 
parallelograms.  In order to illustrate further how one uses vectors to study geometry, we 
shall now give some alternate proofs using vectors. 
 

RECALL that by Exercise I.4.3 in the file math133exercises1.pdf , if we are given three 

noncollinear points a, b and d in RRRR
2
 and c  =  b + d – a,  then the four points  a,  b,  c 

and  d  (in that order) form the vertices of a parallelogram.  This observation has two 
simple but important consequences: 
 

b – a   =   c – d              c – b   =   d – a 
 

These follow directly from the formula for c given above, and they immediately imply all 
the basic measurement properties of a parallelogram: 
 

Vector proofs of parallelogram identities.  If a,  b,  c  and  d  (in that order) form the 
vertices of a parallelogram, then the following hold: 
 

1. d (a, b)   =   d (c, d) 
 

2. d (a, d)   =   d (b, c) 
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3. | ∠∠∠∠d a b |  =  | ∠∠∠∠b c d | 
 

4. | ∠∠∠∠d a b |  +  | ∠∠∠∠a d c |   =  180° 
 

Derivations.  Since b – a  =  c – d  and c – b  =  d – a, we have the following: 
 

d(a, b)  =  || b – a ||  =  || c – d ||  =  d(a, b) 
 

d(a, d)  =  || d – a ||  =  || c – b ||  =  d(b, c) 
 

This proves the first two statements.  To prove the third statement,  observe  that   

cos |∠∠∠∠dab| is equal to  
 

||||

)()(

||||

)()(

cdcb

cdcb

abad

abad

−−−−⋅⋅⋅⋅−−−−

−−−−⋅⋅⋅⋅−−−−
====

−−−−⋅⋅⋅⋅−−−−

−−−−⋅⋅⋅⋅−−−−  

  

and the latter is equal to  cos  |∠∠∠∠b c d |, so that  cos  |∠∠∠∠d a b |  =   cos  |∠∠∠∠b c d |.  Since 

the cosine function is a strictly decreasing function on angle measurements between 0 

and  180  degrees, the equation at the end of the previous sentence implies the third 
statement.  Finally, to prove the fourth assertion we proceed much as in the immediately 

preceding discussion, but the outcome is slightly different.   In this case  cos  |∠∠∠∠a d c|  is 

equal to 
 

||||

)()(

||||

)()(

abad

abad

dcda

dcda

−−−−⋅⋅⋅⋅−−−−

−−−−⋅⋅⋅⋅−−−−
−−−−====

−−−−⋅⋅⋅⋅−−−−

−−−−⋅⋅⋅⋅−−−−
 

 

and the right hand side is equal to  –  cos  |∠∠∠∠dab|, so  cos  |∠∠∠∠adc|  =  –  cos  |∠∠∠∠dab|.  
By the sum formula for the cosine function and it strictly decreasing nature between 0 

and 180 degrees, we know that  cos αααα  =  –  cos ββββ  for  0  0  0  0  <  α,   α,   α,   α,     β  β  β  β  <  π   π   π   π         if and only if  

αααα  and  ββββ  are supplementary, and thus the fourth statement also follows immediately.� 
 

Here is one more standard result on parallelograms: 
 

If  a,  b,  c  and  d  (in that order) form the vertices of a parallelogram, then the diagonal 
lines  ac  and  bd  intersect at a point which is the midpoint of both  [ac]  and  [bd]  (in 
words,  the diagonals of the parallelogram bisect each other). 
 

To prove this it is only necessary to check that   ½ (a + c)   =  ½ (b + d).  This can be 

done by noting that the formula for c implies 
 

½ (a + c)   =   ½ (a + b + d – a)   =   ½ (b + d) .� 
 

REGULAR POLYGONS.  Perhaps the most important class of convex polygons aside from 

triangles and quadrilaterals is the class of  regular n – gons;  for  n  =  3  or  4  these 
are given by equilateral triangles and squares respectively.   However, before we 
discuss these in general it will be helpful to have some auxiliary results of independent 
interest.  
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Digression on lines and circles 
 
 

If Q is a point in the plane P and  a  is a positive real number, then the circle  (in the 

plane P) with center Q and radius a is the set of all points X in P such that  d(X, Q)  =  

a.  The first observation is extremely basic. 
 

Proposition 7.  Let L be a line containing Q, let P be a plane containing L, and let a be 
a positive real number.  Then there are exactly two points B and C on L that lie on the 

circle with center Q and radius a, and the center Q lies between them. 
 

Proof.  We know there are points  X  and  Y  on  Q such that  X∗Q∗Y, and there are 

unique points  B  ∈∈∈∈  (QX and  C  ∈∈∈∈  (QY  such that  d(B, Q)   =   d(C, Q)   =   a.  Since 

every point on  L  is either equal to  Q  or lies on one of the rays  (QX  or  (QY, this 
proves that the line contains exactly two points on the circle.  Furthermore, since  C  

does not lie in the ray  [QX  =  [QB, it follows that  C∗Q∗B  must hold.� 
 

Here is a more substantial result. 
 

Theorem 8.    Let ΓΓΓΓ be the circle in the plane P with center Q and radius a, and let A 

and B be points on ΓΓΓΓ such that A, B and Q are not collinear.   Then the following are 

equivalent for a point X  ∈∈∈∈  AB: 

 (1) X  ∈∈∈∈  (AB) . 

(2) X  ∈∈∈∈  Int ∠∠∠∠AQB. 

(3) X  satisfies  d(X, Q)  <  a  (in everyday language, X lies inside the circle ΓΓΓΓ    ). 
 

 

Definition.   The interior of the circle ΓΓΓΓ is the set of all points X in the plane of the circle 

such that  d(X, Q)  <  a, and similarly the exterior of the circle ΓΓΓΓ is the set of all points X 

in the plane of the circle such that  d(X, Q)  >  a .  Phrases like  inside ΓΓΓΓ  and  outside 

ΓΓΓΓ  are defined correspondingly, and likewise for the symbolic forms  Int ΓΓΓΓ and  Ext ΓΓΓΓ.... 
 

Proof.   We shall prove that (1) and (2) are logically equivalent (each implies the other) 
and likewise for (1) and (3). 
 

Verification that (1) implies (2).  If X ∈∈∈∈ (AB), then A∗X∗B implies that X and B lie on the 

same side of QA, and similarly that X and A lie on the same side of QB, so that X  ∈∈∈∈  

Int ∠∠∠∠AQB. 
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Verification that (2) implies (1).  If X  ∈∈∈∈  Int ∠∠∠∠AQB, then by the Crossbar Theorem there 

is a point Y which lies on (AB) and (QX.  Since we already know that X lies on the line 

AB, it follows that Y must be X, and hence A∗X∗B is true, so that X  ∈∈∈∈  (AB).  
 

Verification that (1) implies (3).  If X ∈∈∈∈ (AB), then A∗X∗B and the Exterior Angle 

Theorem imply that  | ∠∠∠∠AXQ |   >  | ∠∠∠∠ABQ |;  the Isosceles Triangle Theorem now 

implies that  |∠∠∠∠ABQ |    =  |∠∠∠∠BAQ|    =  |∠∠∠∠XBQ|.  Since the larger angle in ����XQB is 

opposite the longer side, it follows that  d(X, Q)  <  d(B, Q)  =  a.    
 

Verification that (3) implies (1).  We shall prove the contrapositive.  Suppose that Y is a 

point of  L  that does not lie on  (AB).  We claim that d(Y, Q)  ≥  a.   There are four 

possibilities; namely, Y could be either A or B, we could have  A∗B∗Y, or we could have 

Y∗A∗B.  The first two cases are clear because then we have  d(Y, Q)  =  a .   For the 

remaining two cases, we claim it will suffice to prove the conclusion in the first case, for 
the other will then follow by switching the roles of  A  and  B  in the argument.  We can 

now apply the Exterior Angle Theorem to conclude that  |∠∠∠∠QBA |   >  | ∠∠∠∠QYB |  =   

|∠∠∠∠QYA |;  the Isosceles Triangle Theorem then implies  |∠∠∠∠QBA|  =  |∠∠∠∠QAB |  =  

| ∠∠∠∠QAY|.   Since the larger angle in ����AQY is opposite the longer side, it follows that 

d(Y, Q) <  d(A, Q)  =  a.   It follows that the statements in the theorem are logically 

equivalent.� 
 

Several other basic results on circles and their interior/exterior regions are presented in 

Section  6  of this unit. 
 

 

Regular polygons and plane rotations 
 
 

We shall concentrate on analyzing standard models for regular n – gons; any definition 

of an arbitrary such object should be formulated so that one can prove that an arbitrary 

regular  n – gon will be congruent to one of the standard models.  Regular polygons are 

very symmetric objects, and we shall use this fact to simplify and clarify the discussion at 

numerous points.  In order to do this we shall need to work with basic isometries of  RRRR
2 

known as  plane rotations. The idea of a rotation of a given angle about a given point is 
intuitively clear and is illustrated by the picture below. 
 

 
 

(Source:  http://en.wikipedia.org/wiki/Rotation) 
 

There is an animated model of a plane rotation at the following online site: 
 

http://mathworld.wolfram.com/Rotation.html 
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One way of making the idea of a rotation mathematically precise is to use polar 

coordinates.  Specifically, if a point is given by the polar coordinates ( r,    αααα )POLAR , then 

counterclockwise rotation through an angle of θθθθ     should take the original point to the 

rotated one with coordinates given by (r,    α α α α +    θθθθ  )POLAR.   If we rewrite the latter using 
rectangular coordinates, we can obtain an explicit formula for the rectangular 
coordinates of the rotated point in terms of the rectangular coordinates of the old one 

and trigonometric functions of θθθθ.  Specifically, such a rotation is linear in the rectangular 

coordinates, and the matrix which represents rotation of a 2 × 1 column vector about 

the origin by a counterclockwise angle of θθθθ  is given as follows: 
 

 
 

To see that this is an orthogonal matrix and hence defines an isometry of RRRR
2
, it suffices 

to check that the matrix is invertible (in fact, its determinant is equal to 1) and its inverse 
is given by its transpose; this is easily checked and left to the reader.  
 

We are particularly interested in rotations where  θ  =  2ππππ/n  for some integer  n  >  2.  

In this case the matrix  B  =  M(2ππππ/n)  satisfies  B 

n 
 =  I,  but no smaller positive 

power of  B  is equal to  I.  Furthermore, in these cases we have  B 

k
  =   M(2ππππk/n).   

 

Let  e1  be the usual unit vector (1, 0),  and let  c  be a positive real number.   We want 

our standard models of regular  n – gons  to have the form  p1 … pn ,  where for every 

integer  k  = 1, … , n  we have  pk  =  B 

k – 1 
 (d e1)  for some fixed positive number  d.  

Alternatively, in coordinates we have  

pk   =   ( d  cos (2ππππ(k – 1)/n), d  sin (2ππππ(k – 1)/n) ). 
 

In order to justify this definition of standard regular n – gons, we need to verify that the 

constructed points  pk  are actually the vertices of a convex polygon.  The use of 
rotations will simplify this proof substantially.  In the course of the proof we shall need 
the following simple property of affine transformations. 
 

Lemma 9.  Let  T  be an affine transformation of  RRRR
2
,  and let  x,  y,  z  be noncollinear 

points in  RRRR
2
.   Then  T  maps the side of  xy  containing  z  to the side of  T(x)T(y)  

containing  T(z).  
 

Proof.    Using barycentric coordinates, express an arbitrary point  p  as a linear 

combination  ax  +  by  +  cz,  where  a + b + c  =  1.  If  p  and  z  lie on the same 

side of  xy,  then  c  is positive.  By the properties of affine transformations derived in 

Section I I.4 we have T(p)   =   aT(x)  + bT(y)  +  cT(z)  so that the barycentric 
coordinate of  T(p)  with respect to  T(z)  is also positive, and hence the two points lie on 

the same side of  T(x)T(y)  as required.� 
 

Theorem 10.  If  p1, … , pn  are given as in the construction above, then they form the 

vertices of a convex polygon (when taken in the given order). 
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Proof.    We adopt the previous conventions about defining  pk  for  k  an arbitrary 

integer; it follows that  pk  =  B 

k – 1
 (c e1)  holds for all such  k.  

  

CLAIM:  By the preceding lemma and the defining identities for the points  pk  it will 

suffice to prove that  the points  p j  for   j  =  3, … , n  all lie on the same side of  p1p2.  

To see this, it is enough to note that the line  pk 
 pk 

 

+ 
 

1  is the image of p1p2 under  B 

k – 1
 
  

and likewise the side of  pk 
 pk 

 

+ 
 

1   containing  pk 
 

+ 2  is the image under  B 

k – 1
  of the side 

of  p1p2  containing  p3.   
 

By construction, all the points  pk  lie on the circle  ΓΓΓΓ  centered at the origin  0  with 

radius equal to  d, so we need to show that all of the points  p j  for  j  =  3, … , n  lie on 

the same side of  p1p2.   Our first observation is that  0  does not lie on the line  p1p2,  

for if it did then  0,  p1  and  p2  would be collinear, and since  p1  =  d e1 this would yield 

the false conclusion that  p2  =  – d e1.  Thus it is meaningful to talk about the side of  

p1 p2  which contains 0; we shall prove the theorem by showing that the points  p j  for  j  

=   3, … , n  all lie on the same side of  p1p2  as  0.  Actually, we shall prove the less 

direct statement that none of these points can lie on opposite side of  p1p2  as  0.   
 

Suppose that  z  is a point of  ΓΓΓΓ     which lies on this opposite side.   Then there is a point  

x  which lies on  (0 z)  and  p1 p2.   It follows that  d(0, x)   <   d(0, z)   =   d.  By the 
previous result on lines and circles, this means that  z  and  x  both lie in the interior of  

∠∠∠∠ p2 0 p1.  Therefore we also have  |∠∠∠∠z 0 p1 |  <  |∠∠∠∠ p2 0 p1 |; furthermore, since  z  and  

p2  lie on the same side of  0 p1, which is just the  x – axis, and the first coordinate of  p2  

is positive, it follows that the same holds for  z.   Combining these observations, we see 

that  z  has the form  ( d cos θθθθ    ,,,,    d sin θθθθ        ) ,  where  0  < θθθθ  <  2ππππ/n.   None of the points  p j  

for  j  =  3, … , n  can be written in this manner, so it follows that they cannot lie on the 

opposite side of the line  p1p2  as  0  and hence they must all lie on the same side as  0.  

This completes the proof that the specified points (in the given order) are the vertices of 

a convex polygon.� 
 

If  p1 … pn  is a standard regular polygon as above, then by its rotational symmetry we 

know that  |∠∠∠∠p1 p2 p3 |   =   |∠∠∠∠pk  pk  +  1  pk  +  2 |  for all  k.  We shall conclude this section 
by deriving the standard formula for the latter.   
 

Proposition 11.  Given  p1 … pn  as above, the angle measurements  |∠∠∠∠ pk  pk + 1 pk + 2| 
are all equal to 

 

.
)2(180

n

n −
 

 

For example, if  n  =  5  then the vertex angle measurements are all  108°,  if  n  =  6 

then the vertex angle measurements are all  120° (see the drawing below),  if  n  =  8 

then the vertex angle measurements are all  135°,  if  n  =  10   then the vertex angle 
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measurements are all  144°,  if  n  =  60  then the vertex angle measurements are all 

174°, and if  n  =  120  then the vertex angle measurements are all  177°. 
 

Proof.    As noted above, by rotational symmetry it suffices to show this when k  =  1.   
 

   

To conform with the picture above, we shall denote the vertices by A1, … , An and the 

origin by Q .  By construction we know that  d(A1, Q)  =  d(A2, Q)  =  d(A3, Q)  =  d.  

Also, we have |∠∠∠∠A1QA2 |   =   |∠∠∠∠A2QA3 |   =   360°/n.   Applying the Isosceles 

Triangle Theorem and the result on the sum of vertex angle measurements for a 
triangle, we have 

 

|∠∠∠∠QA1A2 |  =  |∠∠∠∠QA2A1|  =  |∠∠∠∠QA2A3 |  =  |∠∠∠∠QA3A2 |  =  ½ (180° – (360°/n) ). 
 

In the course of proving that regular polygons are convex, we showed that Q lies on the 

same side of A1A2 as A3 and also lies on the same side of A2A3 as A1.  Thus Q lies in 

the interior of ∠∠∠∠A1A2A3 , so by the Additivity Postulate for angle measures we have  
 

|∠∠∠∠A1A2A3 |    =   |∠∠∠∠QA2A1 |  +  |∠∠∠∠QA2A3|    =   2 · [ ½ (180° – (360°/n) ) ]. 
 

It is a straightforward algebraic exercise to rewrite the expression on the right hand side 

in the form displayed in the proposition.� 


