
THE CLASSICAL APPROACH TO SIMILARITY 
 
In the lectures we used geometric transformations as a basis for studying similarity theory.  One 
crucial point in our approach was the existence of similarity transformations whose effect on 

distances are multiplication by an arbitrary positive real number k.  Since the classical approach 
in Greek geometry did not have a mathematically rigorous notion of geometrical transformation, 
clearly it needed alternatives.  It took a couple of centuries for the Greeks to develop tools which 
justified similarity theory for all possible ratios of interest, and we shall sketch them here.  
 
Before discoveries of Eudoxus in the 4th century B.C.E., the Greek geometers were only able to 
prove similarity theorems for triangles in the commensurable case.  For a pair of triangles  

���� ABC and ���� DEF, this means that the common ratio of the lengths of the corresponding 

sides 
 

|AB|/|DE|  =  |AB|/|DE|  =  |AB|/|DE| 
 

is a rational number. Greek geometers were able to attack the similarity problem 
effectively using the following fact, which one might call the Notebook Paper Theorem. 
 
Suppose that we are given a family of distinct parallel lines P1, P2, … and two transversals L 
and M that are neither parallel or identical to these lines. Assume that the points satisfy the 

ordering condition P1*P2*… *Pn.  For each k let A k be the point at which L and Pk intersect, 

and let B k be the point at which M and Pk intersect.  If all the segment lengths | A k A k +1| are 

equal to a, for some fixed a, then all the segment lengths | B k B k +1| are equal to b, for some 

fixed b.  
 

 
 

One can prove this by induction on the number of parallel lines.  In fact the initial case with three 
parallel lines and the inductive hypothesis  
 

(true for n parallel lines)  implies (true for  n + 1  parallel lines). 



Both reduce to analyzing the situation in the drawing below; the goal is to prove that  |AB| = 

|BC|  implies that  |DE| = |EF|. 
 

 
In this drawing the line XY is parallel to AB, and one also has the three betweenness conditions 
suggested in the drawing.   By construction we have parallelograms ABEX and BCYE, so that 

|XE|  =  |AB|  =  |BC|  =  |YE|.   This leads to concluding that  ���� XED is congruent to  ���� YEF 
by  A.S.A.  (there are alternate interior angles and X and Y, and vertical angles at E),  and 

hence that |DE|  =  |EF|.  
 
A typical example of two triangles with commensurable ratios is given below.  In this case we 

have  |AB|  =  5p  and  |AD|  =  8p  for some positive real number  p.    By the Notebook Paper 

Theorem we then have  |AB|  =  5q  and  |AD|  =  8q  for some positive real number q.  
 

 
 

Similar considerations hold if  5:8  is replaced by an arbitrary ratio  M:N  where  M  and  N  are 
arbitrary positive integers.   All this was presumably known very early in the development of 

Greek geometry.  However, when the Pythagoreans discovered that the square root of  2  is 
irrational, it was immediately clear that the argument for commensurable quantities only yielded 
a partial result on proportionality. 
 
Euclid’s Elements gave a satisfactory treatment for incommensurable ratios using ideas 
developed by Eudoxus a few decades earlier.  Here is a formal statement of Eudoxus’ criterion 
for two ratios to be equal: 
 

  



Two ratios of (positive real) numbers a /b and c / d are equal if and only if for each pair 

of positive integers m and n we have the following: 
 

ma   <   nb   implies   mc   <   nd 
 

ma   >   nb  implies  mc   >   nd 

 

The derivation of this criterion is based upon a fundamentally important rational density 
property of the real numbers:   
 

If we are given real numbers  x  and  y  such that  x < y,  then there is a rational number  r  such 

that  x < r < y.   

 

A derivation of Eudoxus’ condition from the rational density property is given in the document 
http://www.math.ucr.edu/~res/math153/history03a.pdf. 

 

 

Application of the Condition of Eudoxus to proportionality questions 
 

 

Suppose now that we have triangles ����ABD and ����ACE as in the figure below, where BD is 
parallel to CE; as in the figure we assume that the rays [AB and [AC are the same and likewise 

that the rays  [AD  and  [AE  are the same.   Let  a = |AB|,  b = |AC|,  c =  |AD| and  d  =  

|AE|.   We want to use the Condition of Eudoxus to conclude that a /b =  c / d. 
 

 
 

Suppose first that  m  and  n are positive integers such that  ma < nb.   We want to show that  

mc < nd.  We can find points P and Q on the ray [AB =  [AC such that |AP| =  ma  and  



|AQ| =  nb.   Since  ma  <  nb, it follows that P is between A and Q.   One can then find 

unique parallel lines to BD and CE through P and Q.  These two lines will meet the line AD = 

AE in two points R and S.   In fact, Pasch’s Theorem will imply that S and R also lie on the ray  

[AD  =  [AE and that  R  is between A and S. 
 

The proportionality results in the commensurable case now imply that 
 

|AR|/|AD| =  m  = |AP| /|AB| and 
 

|AS| /|AE| =  n  = |AQ|/|AC|. 
 

Therefore |AR| =  mc  and  |AS| =  nd  also hold.  By observations from the previous 

paragraph we know that  |AR|  <  |AS|, and thus we may use the preceding sentences to rewrite 

this as  mc   <   nd.  To summarize, we have now shown that  ma   <   nb implies  mc   <   nd. 

 

If we have  ma > nb, then we may proceed similarly. The argument is basically the same 

except that Q will be between A and P, and this in turn will imply that S is between A and R.  

Following the same line of reasoning in this case, one concludes that  ma  >  nb   implies       

mc   >   nd.   Therefore we have established both parts of the Condition of Eudoxus, and 

consequently we have shown that a/b  =  c/ d;  by definition of the numbers  a, b, c, d  in this 

equation, the desired proportionality equation  |AB|/|AC| = |AD|/|AE| is an immediate 
consequence.  
 


