More exercises for Sections III. 3 - III. 8

1. A convex quadrilateral $A B C D$ is said to be a kite if $|A B|=|A D|$ and $|C B|=|C D|$.
(a) Find examples of kites which are not parallelograms.
(b) Suppose that a convex quadrilateral is both a kite and a parallelogram. What stronger conclusion can be drawn? (For example, must it be a square or rectangle, or ...?)
(c) If the convex quadrilateral $A B C D$ is a kite, prove that the area of the associated solid kite (the kite $A B C D$ plus its interior) is equal to $|A C| \cdot|B D|$.
2. One way of modelling home plate on a baseball field is to construct a polygon with vertices $A=(0,0), B=(p, 0), C=(p+q, q), D=(q, p+q)$ and $E=(0, p)$, where $p, q>0$. Prove that these five points, in the given order, form the vertices of a convex pentagon.
3. Suppose that we are given an acute angle $\angle A B C$, and let S be the set (or locus) of all points X in the interior of $\angle A B C$ such that the distance from X to $B A$ is half the distance from X to $B C$. Prove that S is an open ray originating at B.
4. Assume we are working in a Euclidean plane, and let A, B, C and D are four points such that no three are collinear and both C and D lie on the same side as the line $A B$. Explain why we cannot have $\triangle C A B \sim \triangle D A B$ or $\delta C B A \sim \triangle D B A$. [Hint: Why are [$A C$ and [$A D$ distinct?]
5. Suppose that we are given real numbers satisfying $b \geq a>0$. For which values of $c>0$ is there a triangle whose sides have lengths equal to a, b, c ? Give reasons for your answer.
