More exercises for Sections III.3 – III.8

1. A convex quadrilateral *ABCD* is said to be a *kite* if |AB| = |AD| and |CB| = |CD|.

(a) Find examples of kites which are not parallelograms.

(b) Suppose that a convex quadrilateral is both a kite and a parallelogram. What stronger conclusion can be drawn? (For example, must it be a square or rectangle, or \dots ?)

(c) If the convex quadrilateral ABCD is a kite, prove that the area of the associated solid kite (the kite ABCD plus its interior) is equal to $|AC| \cdot |BD|$.

2. One way of modelling home plate on a baseball field is to construct a polygon with vertices A = (0,0), B = (p,0), C = (p+q,q), D = (q, p+q) and E = (0,p), where p, q > 0. Prove that these five points, in the given order, form the vertices of a convex pentagon.

3. Suppose that we are given an acute angle $\angle ABC$, and let S be the set (or locus) of all points X in the interior of $\angle ABC$ such that the distance from X to BA is half the distance from X to BC. Prove that S is an open ray originating at B.

4. Assume we are working in a Euclidean plane, and let A, B, C and D are four points such that no three are collinear and both C and D lie on the same side as the line AB. Explain why we cannot have $\Delta CAB \sim \Delta DAB$ or $\delta CBA \sim \Delta DBA$. [Hint: Why are [AC and [AD distinct?]]

5. Suppose that we are given real numbers satisfying $b \ge a > 0$. For which values of c > 0 is there a triangle whose sides have lengths equal to a, b, c? Give reasons for your answer.