CHAPTER

17

Cartesian Goordinate
Systems

Obviously, all readers of this book know about coordinate systems, from ele-
mentary analytic geometry. For the sake of completeness, however, we explain
them here from the beginning. To achieve speed and simplicity, and reduce
the amount of outright repetition, we have introduced various novelties in the
derivations.

In a plane E we set up a Cartesian coordinate system in the following way.
First we choose a line X, with a coordinate system as given by the ruler postu-
late. The zero point of X will be called the origin. We now take a line Y, perpen-
dicular to X at the origin, with a coordinate system in which the origin has
coordinate = 0.
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Figure 17.1

Given a point P of E, we drop a perpendicular to a point M of X. The co-
ordinate x of M on X is called the x-coordinate, or the abscissa, of P. We drop a
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perpendicular from P to a point N of Y. The coordinate of N on Y is called the
y-coordinate, or the ordinate, of P. Thus to every point P of E there corresponds
an ordered pair (x,y) of real numbers, that is, an element of the product set
R X R. Clearly this is a one-to-one correspondence

EoRXR.

For short, we shall speak of “the point (x,y),” meaning, of course, the point cor-
responding to (x,y) in the coordinate system under discussion.

|M1 |M2

Figure 17.2

B THEOREM 1. The distance between the points P, = (x;,y,) and P, =
(x2,99) is given by the formula

PPy = V(g — x)? + (y, — y1)?.

PROOF. Let M, N,, M, N, be the projections of P, and P, onto the axes, as in
the definition of coordinates. If x; = x,, then

P P, ||N| N,, s = x| =0,
and

P, P, = ')’2_J’1|
=V ()’2 - }’1)2
= Vix, — %) + (92 — m)?.

(Here we are ignoring the trivial case where P, = N, and P, = N,.) If y, = y,,
the same conclusion follows in a similar way. Suppose, then, that x; # x, and
% # Y2, as in the figure. Then the horizontal line through P, intersects the ver-
tical line through P,, in a point Q, and AP, P,Q has a right angle at Q. (Here,
and hereafter, a horizontal line is X or a line parallel to X; and a vertical line is
Y or a line parallel to Y.) Thus

P Q=MM,,
and

P2Q=N2N1,
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either because the point pairs are the same or because opposite sides of a rect-
angle are congruent. By the Pythagorean theorem,

P,P:=P Q%+ P,Q%
Therefore
P,P}= M,M?}+ N,N}
= |x; — x,|2 + |J’2 - N
= (xy — x)* + (32 — 3)%

|2

and from this the distance formula follows. [J
By a linear equation in x and y we mean an equation of the form
Ax +By+ C=0,

where A, B, and C are real numbers, and A and B are not both = 0. By the graph
of an equation, we mean the set of all points that satisfy the equation. More
generally, by the graph of a condition we mean the set of all points that satisfy
the given condition. Thus the interior of a circle with center Q and radius r is
the graph of the condition PQ < r; and one of our theorems tells us that the
perpendicular bisector of a segment AB is the graph of the condition PA = PB.

B THEOREM 2. Every line in E is the graph of a linear equation in x and y.

PROOF. Let L be a line in E. Then L is the perpendicular bisector of some
segment P, Py, where P, = (x,,,) and P, = (x,,y;). Thus L is the graph of the
condition

PP, = PP,.
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Figure 17.3

With P = (x,y) this can be written algebraically in the form

\/(7‘ - %)+ ()’ - 3’1)2 = \/(x - x)? + (J’ - 3’2)2,
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or
x? = 2% + 22+ 97— 299 + 97 = x% — 20 + x5 + 97 — 2999 + 93
or
20y — x)x + 2(y — y)y + (k3 + y5 + x} +9) = 0.
This has the form
Ax + By + C=0.

And A and B cannot both be = 0, because then we would have x, = x, and
yo = y,; this is impossible, because P, # P,. [

B THEOREM 3. If L is not vertical, then L is the graph of an equation of
the form

y=mx + k.
PROOF. L is the graph of an equation
Ax+ By + C=0.

Here B # 0, because for B = 0 the equation takes the form x = —C/A; and the
graph is then vertical. Therefore we can divide by B, getting the equivalent
equation

__Ax_C
Y="B B
This has the desired form, with
A C
m= =5 k= 5 O

B THEOREM 4. If L is the graph of y = mx + b, and (x,,y,), (xs,7:) are any
two points of L, then

Yo — N

_ =m.

Xo T X%
PROOF. Since both points are on the line, we have
Yo =mxy + k, y, =mx; + k.
Therefore

Yo — Y = mlxy — x,),
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and x, # x,, because L is not vertical. Therefore

Yo "N _ |

=m.
Xo — X1

Thus the number m is uniquely determined by the line. It is called the slope of
the line.

B THEOREM 5. Let L and L' be two nonvertical lines, with slopes m and
m'. If L and L' are perpendicular, then

PROOF. Let
P, = (xl»yl) and P, = (x2,y2)

be points of L', such that L is the perpendicular bisector of P, P,. (See Fig. 17.3.)
As in the proof of Theorem 2, L is the graph of the equation

20xy — x)x + 2032 — i)y + (x3 + 33 + 21 +y7) = 0.
This has the form
Ax + By+ C =0,
where
A = 2(x, — x)), B =2(y, — y)).
Therefore

A __2(x2—x1)_ X9 — X

B 2(ys — y1) N Yo = W1
But, by Theorem 4, we have

m = 2N

X2 _xl

Therefore m' = —(1/m), which was to be proved. [

B THEOREM 6. Every circle is the graph of an equation of the form
x*+y*+Ax+By+ C=0.

PROOF. By the distance formula, the circle with center (a,b) and radius r is
the graph of the equation

Vix—a?+(y—5b2=r,
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or
x? = 2ax + a®+y?— 2y + b* -1 = 0.

This has the required form, with

A= —2a,

B = -2b,

C= (12 + b2 - 72. D

The converse of Theorem 6 is false, of course. The graph of
x? + yQ =0
is a point, and the graph of
x2+92+1=0

is the empty set.

Problem Set

In proving the following theorems, try to use as little geometry as possible, putting the
main burden on the algebra and on the theorems of this section.

1. Show that the graph of an equation of the form
xX*+y'+Ax+By+C=0

is always a circle, a point, or the empty set.

2. Show that if the graphs of the equations
y=mx + k, Yy =mex + k

are two (different) intersecting lines, then m; # m.
3. Show that if m; = my, then the graphs are either parallel or identical.

4. In the chapter on similarity, we defined
Ay, By, Cp ~ Ay, By, Gy

to mean that all the numbers in question were positive and that

Let us generalize this in the following way. Given A,, B, C,, not all = 0. If there is a
k # 0 such that

Ay = kA, B, = kB, C, = kCy,
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then we say that the sequences A,, B,, C, and Ay, By, C; are proportional, and we write

Al’ Bl» Cl -~ AQ, B2’ C2'

With this understanding, show that if

A1x+B[y+C|=0 and A2x+Bgy+C2=0

have the same line L as their graph, then

Ay, By, C, ~ Ay, By, C,.

[Hint: Discuss first the case where L is vertical, and then the case where L is not

vertical.]

5. Describe the graphs of the following equations.

E?)))x2+%2+l+2x+2y+2xy=0
xy:
(c) x3+xy2—x=0

René Descartes
(1596-1650)

Descartes is a famous man
in two quite separate do-
mains: he is known among
philosophers as a great
philosopher and among
mathematicians as a great
mathematician.

His greatest contribu-
tion to mathematics was the discovery
of coordinate systems and their appli-
cation to problems of geometry. Ever
since then algebra and geometry have
worked together, to the advantage of
both. To this day, coordinate systems of
the sort used in this book are referred
to as Cartesian coordinate systems, in
honor of their inventor. The concept of
coordinates was the first really fun-
damental contribution to geometry af-
ter the Greeks. (The word Cartesian
comes from Cartesius, which is the Latin
form of Descartes’ name.)

Part of the credit for Descartes’
discovery should go to Pierre Fermat,
who had much the same ideas at about
the same time. Fermat was one of the
few great amateur mathematicians. He
worked for the French government,

and pursued mathematics
in his spare time. He
wrote letters to his friends
about his discoveries, and
never published them in
any other form. But the
material in Fermat’s let-
ters is now included in all
the standard books on the
theory of numbers.

The development of
coordinate systems laid the foundation
for the development of calculus, soon
thereafter, by Newton and Leibniz.
Thus Descartes must have been one of
the men Newton had in mind when he
said that he had stood on the shoulders
of giants.

In otherwise well-informed circles,
we often encounter the notion that
Cartesian coordinate systems can be
used to solve or to avoid problems in
the foundations of geometry. We also
encounter the notion that Descartes
invented coordinate systems for this
reason. These notions are based on
misunderstandings of mathematics and
of its history, respectively.

First, to set up a coordinate system,
we need to know quite a lot about ge-
ometry. For example, if we do not know
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that the perpendicular to a line, through
a given point, exists and is unique, we
cannot explain what we mean by the
x-coordinate of a point. By the time
we can do this, the whole issue of the
foundations is over, for better or worse,
usually worse.

Second, Descartes invented coordi-
nate systems to solve problems that he
could not solve in any other way. In his
time, nobody was worried about the
foundations of geometry. Euclid was
still regarded as a model of deductive
rigor. What everybody was worried
about was the real number system.
Then, mathematicians (writing in Latin)
called the negative numbers the numeri
ficti, that is, the fictitious numbers, the
numbers that are not really there. The
situation was awkward: mathematicians
were getting right answers to difficult
algebraic problems by methods that
they felt sheepish about. The scheme
worked like this:

1. Pretend that negative real numbers
exist (though you know very well
that they do not). This gives a sys-
tem R in which half the numbers are
“numeri ficti.” In the new system, to
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every x there corresponds a number
—x such that x + (—x) = 0.

2. Hopefully assume that the laws that
govern the positive numbers also
hold in the new system. Then ab =
ba, a(b + ¢) = ab + ac, and so on.

3. Assume that (—a)b = —(ab) and
(—a) (—b) = ab, always.

4. Postpone, to some later century,
the problem of justifying these
procedures.

The real number system seems
simple to us, because to us, the preced-
ing laws are habits; but the laws were
not habits to the people who invented
the system, and so, to them, the system
was mysterious. For example, if we are
asked, what is (—2) (—3), we “know”
that the answer is 6, but what on earth
was the meaning of the question?

The foundations of analysis were
straightened out in the nineteenth cen-
tury, when Descartes had long been
dead. But in his time, the real number
system was so shaky that nobody
dreamed of using it as a foundation for
anything else.




