Mathematics 133, Fall 2021, Examination 1

Answer Key

1. [25 points] Suppose we are given $\triangle A B C$ and points $D \in \operatorname{Int} \angle A C B$ and $E \in$ Int $\angle A B C$. Prove that the open rays $(B E$ and $(C D$ have a point in common

SOLUTION

By the Crossbar Theorem we know that $(C D$ and $(A B)$ have some point G in common. Note that $\angle A B C=\angle G B C$ as sets, so that $E \in \operatorname{Int} \angle G B C$.

We can now apply the Crossbar Theorem to conclude that there is a point $H \in(B E \cap(C G)$. Since $(C G) \subset(C D$ we also have $H \in(B E \cap(C D$.■
2. [25 points] Let $[A C]$ and $[B D]$ be noncollinear closed segments which have a single point X in common, and assume this point is the midpoint of both $[A C]$ and $[B D]$. Prove that $A B$ and $C D$ are parallel lines without using the Euclidean Parallel Postulate (or a logically equivalent statement).

SOLUTION

Here is a drawing:

The common midpoint X satisfies the betweenness conditions $A * X * C$ and $B * X * D$. If we combine this with $|A X|=|C X|$ and $|B X|=|D X|$ and the Vertical Angle Theorem, we find that $\triangle A X B \cong \triangle C X D$ by SAS. It follows that $|\angle X A B|=|\angle X C D|$, and since $\angle X A B=\angle C A B$ and $\angle X C D=\angle A C D$ as sets, it follows that $|\angle C A B|=|\angle A C D|$.

By construction $A C$ is a transversal for the lines $A B$ and $C D$, and the betweenness conditions imply that B and D lie on opposite sides of $B D$. Therefore $\angle C A B$ and $\angle A C D \mid$ are alternate interior angles, and since their measures are equal these lines must be parallel. - Note that this proof does not require the Euclidean Parallel Postulate..
3. [25 points] Assume the plane under consideration is Euclidean, and suppose that we are given $\triangle A B C$ such that $|B C| \leq|A C| \leq|A B|$. Prove that $|\angle A C B| \geq 60^{\circ}$. [Hint: If x, y, z are positive real numbers, why is at least one of them greater than or equal to $\left.\frac{1}{3}(x+y+z) ?\right]$

SOLUTION

We shall first answer the question in the hint. If we have $0<x, y, z<\frac{1}{3}(x+y+z)$ and we add the associated inequalities for each of x, y, z we obtain the contradiction $x+y+z<$ $3 \cdot \frac{1}{3}(x+y+z)=x+y+z$. The source of the contradiction is the assumption that $0<x, y, z<\frac{1}{3}(x+y+z)$, so this must be false and hence at least one x, y, z must be greater than or equal to $\frac{1}{3}(x+y+z)$.

Since the larger angle is opposite the longer side, it follows that $|\angle B A C| \leq|\angle A B C| \leq$ $|\angle A C B|$. Since the sum of these numbers is 180°, the observation in the preceding paragraph implies that the largest of them, namely $|\angle A C B|$, must be at least 60°.
4. [25 points] Assume the plane under consideration is Euclidean, and suppose that we are given $\triangle A B C \sim \triangle D E F$. If $G \in(A C)$ and $H \in(D F)$ are such that $[B G$ and $[E H$ bisect $\angle A B C$ and $\angle D E F$ respectively, prove that

$$
\frac{|B G|}{|B C|}=\frac{|E H|}{|E F|}
$$

SOLUTION
Here is a drawing:

By the similarity assumption we have $|\angle A B C|=|\angle D E F|$ and $|\angle A C B|=|\angle D F E|$. Therefore the bisector conditions imply that $|\angle G B C|=\frac{1}{2}|\angle A B C|=\frac{1}{2}|\angle D E F|=|\angle H E F|$. Therefore the AA Similarity Theorem implies that $\triangle G B C \sim \triangle H E F$, so that

$$
\frac{|B G|}{|E H|}=\frac{|B C|}{|E F|}
$$

This is equivalent to the desired equation

$$
\frac{|B G|}{|B C|}=\frac{|E H|}{|E F|}
$$

because the each of the proportionality equations $p / q=r / s$ and $p / r=q / s$ implies the other.■

