Mathematics 133, Fall 2021, Examination 2

Answer Key

1. [25 points] Assume we are working in neutral plane geometry, and let $A B$ be a line in that plane with $X \in[A B$. If $|A X|<|A B|$ which of the following are true and which are false? Reasons are not required but might earn partial credit if your answer is incorrect.
(a) $B \in(A X)$.
(b) $[A B=[A X$.
(c) If L is a second line through A, then B and X lie on opposite sides of L.
(d) If $C \notin A B$ then X lies in the interior of $\angle A C B$.
(e) $X \in[B A$.

SOLUTION

We shall start by taking a ruler function $f: A B \rightarrow \mathbb{R}$ such that $f(A)=0$ and $f(B)>0$. Then $X \in[A B$ implies that $f(X)>0$ and hence $f(X)=|f(X)-f(A)|=$ $|A X|<|A B|=|f(B)-f(A)|=f(B)$.

(a) FALSE. If this were true, then $A * B * X$ would imply $|A B|<|A X|$, which contradicts the assumption that $|A X|<|A B|$..
(b) TRUE. We have noted that $0<f(X)<f(A)$, and we know that the rays $[A B$ and $[A X$ are the sets of points Y on the line such that $f(Y) \geq 0$ in each case.
(c) FALSE. If this were true, then by the Plane Separation Postulate there would be a point $Y \in(B X) \cap L \subset A B \cap L$. Since $A \in A B \cap L$ and two distinct lines have at most one point in common, it follows that $A=Y$ and hence $B * A * X$. This contradicts the defining condition for X to lie on $[A B$, and therefore B and X cannot lie on opposite sides of L.■
(d) FALSE. By definition the interior of $\angle A C B$ is contained in one of the half-planes defined by $A B$, and therefore the subsets $A B$ and $\operatorname{Int} \angle A C B$ have no points in common. Since $X \in A B$ this means that $X \notin \operatorname{Int} \angle A C B$.■
(e) TRUE. Since $X \in[A B$ and $|A X|<|A B|$ we know that $X \in(A B)$..
2. [20 points] Assume we are working in Euclidean plane geometry and we are given a right triangle $\triangle A B C$ with a right angle at C, and let $D \in(A B)$ be a point such that [$C D$ bisects $\angle A C B$. Give a formula for $|A D|$ in terms of $|A B|,|B C|$ and $|A C|$.

SOLUTION

By the Angle Bisector Theorem in Euclidean geometry, we know that

$$
\frac{|A C|}{|B C|}=\frac{|A D|}{|B D|}=\frac{|A D|}{|A B|-|A D|}
$$

and if we let $x=|A D|$ this equation reduces to

$$
\frac{|A C|}{|B C|}=\frac{x}{|A B|-x}
$$

which in turn is equivalent to $|A C| \cdot(|A B|-x)=x \cdot|B C|$. If we solve for $x=|A D|$ we find that is equal to

$$
\frac{|A C| \cdot|A B|}{|A C|+|B C|} \cdot
$$

3. [30 points] Assume we are working in Euclidean plane geometry and we are given $\triangle A B C$, with $D \in(A C)$ and $E \in(A B)$ such that $B C$ is parallel to $D E$. Prove that $|B E|=|C D|$ if and only if $|\angle E B C|=|\angle D C B|$.

SOLUTION

Here is a drawing which reflects the first sentence of the problem. However, one must observe that the given data contain no assmption whether the triangles are isosceles.

What can we conclude? Since $B C \| D E$ the theorem on transversals and corresponding angles implies that $|\angle A B C|=|\angle A D E|$ and $|\angle A C B|=|\angle A E D|$, so that $\triangle A B C \sim \triangle A D E$ by the AA Similarity Theorem. Therefore

$$
\frac{|A B|}{|A E|}=\frac{|A C|}{|A D|} \quad \text { or eqivalently } \quad \frac{|A B|}{|A C|}=\frac{|A E|}{|A D|} .
$$

The betweenness relations imply that $|A B|=|A E|+|B E|$ and $|A C|=|A D|+|C D|$. If we substitute this into the left hand side of the first proportionality equation, we obtain yet another equivalent version

$$
1+\frac{|B E|}{|A E|}=1+\frac{|C D|}{|A D|}
$$

which in turn is equivalent to $|B E| /|A E|=|C D| /|A D|$ and $|B E| /|C D|=|A E| /|A D|$.
Suppose now that $|B E|=|C D|$. Then the left hand side of the last equation is equal to 1 , and thus the same is true for the right hand side, so that $|A E|=|A D|$. This means that the ratio on the right hand side of the second equation is also equal to 1 , so that $|A B| /|A C|=1$. By the Isosceles Triangle Theorem we then have $|\angle A B C=\angle E B C|=$ $|\angle A C B=\angle D C B|$, proving the implication in one direction.

Convrsely, suppose that $|\angle E B C|=|\angle D C B|$. By the last sentence of the previous paragraph this can be rewritten as $|\angle A B C|=|\angle A C B|$. The Isosceles Triangle Theorem now implies that $|A B|=|A C|$ and hence $|A B| /|A C|=1$. Since $|A B| /|A C|=|A E| /|A D|$ it also follows that $|A D|=|A E|$ If we substitute the equations of this paragraph into the expressions $|A B|=|A E|+|B E|$ and $|A C|=|A D|+|C D|$, we have

$$
|A E|+|B E|=|A B|=|A C|=|A C|=|A D|+|C D|=|A E|+|C D|
$$

and if we subtract $|A E|$ from the left and right hand sides we obtain the desired equation $|B E|=|C D|$..
4. [25 points] Assume we are working in the coordinate plane \mathbb{R}^{2} and we are given the isosceles right triangle $\triangle A B C$ where $A=(-1,0), B=(0,1)$ and $C=(1,0)$. Prove that there are two points D on the y-axis such that $2|B D|=|A D|=|C D|$ and find the y-coordinates for these points.

SOLUTION

It is helpful to plot the given points in the coordinate plane.

The equation $2|B D|=|A D|=|C D|$ is equivalent to $4|B D|^{2}=|A D|^{2}=|C D|^{2}$, and it will be convenient to work with this formulation. If $D=(0, y)$ the latter equation can be rewritten in the form

$$
4(y-1)^{2}=y^{2}+1
$$

which is equivalent to $3 y^{2}-8 y+3=0$. If we solve for y using the Quadratic Formula, we obtain the following two roots:

$$
y=4 \pm \sqrt{16-9=7}
$$

Therefore the two choices for D are $(0,4 \pm \sqrt{7})$.■
5. [30 points] Assume we are working in a neutral plane geometry and we are given a Saccheri quadrilateral $\diamond A B C D$ with right angles at B and C, and let E and F be the midpoints of $[C D]$ and $[A B]$ respectively.
(a) Explain why F, B, C and E (in that order) are the vertices of a Saccheri quadrilateral and give reasons for your answer.
(b) Are the corresponding statements for A, F, E and D (in that order) true or false for each of Euclidean and hyperbolic geometry? Give reasons for your answers in both cases.

SOLUTION

(a) The lines $F B=A B$ and $C E=C D$ are both perpendicular to $B C$, and $|F B|=$ $\frac{1}{2}|A B|=\frac{1}{2}|C D|=|C E|$, so the conditions for a Saccheri quadrlilateral are satisfied.

(b) Euclidean case. We claim that A, F, E and C (in that order) ARE the vertices of a Saccheri quadrilateral. The midpoint condition implies that $|F A|=\frac{1}{2}|A B|=\frac{1}{2}|C D|=$ $|D E|$, and the Saccheri quadrilateral in (a) is a rectangle because we have assumed the plane is Euclidean. In particular, this implies that the line $E F$ is perpendicular to each of $A F=A B$ and $C D=D E$. The conclusions of the preceding two sentences imply that A, F, E and C (in that order) are the vertices of a Saccheri quadrilateral.

Hyperbolic case. We claim that A, F, E and C (in that order) ARE NOT the vertices of a Saccheri quadrilateral. In fact, $E F$ is not perpendicular to either $A F=A B=$ $B F$ or $C E=C D=D E$ because (a) implies that $|\angle B F E|=|\angle C E F|<90^{\circ}$ in hyperbolic geometry.■
6. [20 points] Assume we are working in hyperbolic plane geometry and we are given a right triangle $\triangle A B C$ with a right angle at C, and let $D \in(A B)$ be the foot of the perpendicular from C to $A B$. Prove that $|\angle B A C|<|\angle B C D|^{\circ}$.

SOLUTION

If $\triangle X Y Z$ has a right angle at Y, then

$$
\begin{aligned}
\delta(\triangle X Y Z)= & 180-|\angle Y X Z|-90-|\angle Y Z X|- \\
& 90-|\angle Y X Z|-|\angle Y Z X|
\end{aligned}
$$

and by the additivity of angle defects we know that $\delta(\triangle C D B)<\delta(\triangle A C B)$.

Since $\angle A B C=\angle C B D$, if we let θ denote the measure of this angle we may rewrite the angle defect inequality as

$$
90-\theta-|\angle D C B|=\delta(\triangle C D B)<\delta(\triangle A C B)=90-|\angle C A B|-\theta
$$

which yields the desired inequality $|\angle B A C|<|\angle B C D|$..

