Math 133, Fall 2018, Quiz 2

Let B, C, D be points on a line L such that B * C * D, and let A be a point which is not on L. Prove that the three distances |AB|, |AC| and |AD| cannot be equal. [Hint: One can use the Exterior Angle and Isosceles Triangle Theorems.]

Solution. We shall assume that the three distances are equal and derive a contradiction. Under this assumption we know that we have three isosceles triangles ΔABC , ΔABD and ΔADC . By the Isosceles Triangle Theorem we have the following equalities:

$$|\angle ABC = \angle ABD| = |\angle ACB| = |\angle ADB = \angle ADC| = |\angle ACD|$$

Call this common value θ . Since $\angle ACB$ and $\angle ACD|$ are supplementary (because B * C * D), it follows that

$$180^{\circ} = |\angle ACB| + |\angle ACD| = 2\theta$$

so that $\theta = 90^{\circ}$. On the other hand, the Exterior Angle Theorem implies that

$$\theta = |\angle ACB| > |\angle ADC| = \theta$$

which is a contradiction. The source of the contradiction is the assumption that |AB|, |AC| and |AD| are all equal, so this must be false, and therefore the conclusion in the problem must be true.