## Math 133, Fall 2018, Quiz 2

Let $B, C, D$ be points on a line $L$ such that $B * C * D$, and let $A$ be a point which is not on $L$. Prove that the three distances $|A B|,|A C|$ and $|A D|$ cannot be equal. [Hint: One can use the Exterior Angle and Isosceles Triangle Theorems.]


Solution. We shall assume that the three distances are equal and derive a contradiction. Under this assumption we know that we have three isosceles triangles $\triangle A B C, \triangle A B D$ and $\triangle A D C$. By the Isosceles Triangle Theorem we have the following equalities:

$$
|\angle A B C=\angle A B D|=|\angle A C B|=|\angle A D B=\angle A D C|=|\angle A C D|
$$

Call this common value $\theta$. Since $\angle A C B$ and $\angle A C D \mid$ are supplementary (because $B * C * D$ ), it follows that

$$
180^{\circ}=|\angle A C B|+|\angle A C D|=2 \theta
$$

so that $\theta=90^{\circ}$. On the other hand, the Exterior Angle Theorem implies that

$$
\theta=|\angle A C B|>|\angle A D C|=\theta
$$

which is a contradiction. The source of the contradiction is the assumption that $|A B|$, $|A C|$ and $|A D|$ are all equal, so this must be false, and therefore the conclusion in the problem must be true..

