Solutions for quiz2f20.pdf

1. This is a straightforward application of the Angle Bisector Theorem: We have a right triangle whose vertices are $X=(p, q), Y=(0,0)$ and $Z=(25,0)$ where p and q are specific positive integers whose sum is less than or equal to 18 . If $W=(w, 0)$ denotes the point of interest, then the Bisector Theorem then says that

$$
\frac{|X Y|}{|X Z|}=\frac{w}{25-w}
$$

and by the hypotheses we know that $|X Y|=\sqrt{p^{2}+q^{2}}$ and $|Y Z|=\sqrt{(25-p)^{2}+q^{2}}$. Solving for w is a straightforward exercise in algebra.■
2. If θ is the measure of the angle described at the beginning of the problem, then we know that $m=\tan \theta$. Furthermore, the bisection hypothesis implies that $k=\tan (\theta / 2)$. Thus the goal of the problem is to find a formula for $\tan (\theta / 2)$ in terms of $\tan \theta$. If we follow the hint, we find the following formula for $\tan \theta=m$ in terms of $\tan (\theta / 2)=k$ in the suggested Wikipedia article:

$$
\tan \alpha=\frac{2 \tan (\alpha / 2)}{1-\tan ^{2}(\alpha / 2)} \quad \text { or equivalently } \quad m=\frac{2 k}{1-k^{2}}
$$

This gives us m in terms of k, but we really want to find k in terms of m. The first step is to clear the second equation of fractions:

$$
m-k^{2} m=2 k \quad \text { or equivalently } \quad m k^{2}+2 k-m=0
$$

If we apply the Quadratic Formula to this we obtain

$$
k=\frac{-2 \pm \sqrt{4+4 m^{2}}}{2 m}
$$

and since this has two roots we need to determine which one gives the correct answer to the problem. Now $4+4 m^{2} \geq 4$, and therefore the right hand side is positive for $-2+\sqrt{4+4 m^{2}}$ and negative for $-2-\sqrt{4+4 m^{2}}$. Therefore the correct answer to the problem is

$$
k=\frac{(-2)+\sqrt{4+4 m^{2}}}{2 m}
$$

