Solutions for quiz3f20.pdf

1. The key to proving this is recalling the interrelationships among the various edges and angles in a parallelogram. In addition to the equalities displayed in the drawing below, we also know that $a+b=180^{\circ}$.

Suppose now that we are given parallelograms $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ such that $|A B|=\left|A^{\prime} B^{\prime}\right|$, $|\angle A B C|=\left|\angle A^{\prime} B^{\prime} C^{\prime}\right|$ and $|B C|=\left|B^{\prime} C^{\prime}\right|$. We need to prove that the remaining 5 corresponding parts of the parallelograms have equal measures. The equalities for the two remaining pairs of sides are implied by the following chains of equations:

$$
|C D|=|A B|=\left|A^{\prime} B^{\prime}\right|=\left|C^{\prime} C^{\prime}\right| \quad|A D|=|B C|=\left|B^{\prime} C^{\prime}\right|=\left|A^{\prime} D^{\prime}\right|
$$

Another chain of equations yields a similar result for one corresponding pair of angles:

$$
|\angle C D A|=|\angle A B C|=\left|\angle A^{\prime} B^{\prime} C^{\prime}\right|=\left|\angle C^{\prime} D^{\prime} A^{\prime}\right|
$$

Finally, the remaining corresponding pairs of angles have equal measures by the following chains of equations:

$$
\begin{aligned}
&|\angle B C D|=180^{\circ}-|\angle C D A|=180^{\circ}-\left|\angle C^{\prime} D^{\prime} A^{\prime}\right|=\left|\angle B^{\prime} C^{\prime} D^{\prime}\right| \\
&|\angle B A D|=180^{\circ}-|\angle A B C|=180^{\circ}-\left|\angle A^{\prime} B^{\prime} C^{\prime}\right|=\left|\angle B^{\prime} A^{\prime} D^{\prime}\right|
\end{aligned}
$$

This completes the verification of all eight conditions in the definition of classical congruence. \quad
2. The following drawing will probably be helpful for understanding the arguments below.

Before considering the two cases, we observe the following: If the convex quadrilateral $A B C D$ is kite-shaped with respect to $A C$, then $|\angle A B C|=|\angle A D C|$. Furthermore, $[A C$ bisects $\angle B A D$ and [CA bisects $\angle B C D$.

The first statement is true because $\triangle A B C \cong \triangle A D C$ by SSS, and it also follows that $|\angle B A C|=$ $|\angle D A C|$ and $|\angle B C A|=|\angle D C A|$. Since a kite is a convex quadrilateral, it follows that C lies in the interior of $\angle B A D$ and A lies in the interior of $\angle B C D$. Therefore we have

$$
\begin{aligned}
& |\angle B A D|=|\angle B A C|+|\angle D A C|=2|\angle B A C| \\
& |\angle B C D|=|\angle B C A|+|\angle D C A|=2|\angle B C A|
\end{aligned}
$$

and this proves the assertion about angle bisectors.
(a) The two kites are congruent in this case. We are given that the four corresponding edges have equal length, and we are also given that $|\angle A B C|=\left|\angle A^{\prime} B^{\prime} C^{\prime}\right|$. By the initial observations we immediately have $|\angle A D C|=\left|\angle A^{\prime} D^{\prime} C^{\prime}\right|$ as well, for we have the following exactly as in the first exercise:

$$
|\angle C D A|=|\angle A B C|=\left|\angle A^{\prime} B^{\prime} C^{\prime}\right|=\left|\angle C^{\prime} D^{\prime} A^{\prime}\right|
$$

To complete the proof we need to compare the measures of the angles whose vertices are (i) A and $A^{\prime},(i i) C$ and C^{\prime}.

Just before the beginning of the discussion regarding (a) we noted that $\triangle A B C \cong \triangle A D C$, and similarly we have $\triangle A^{\prime} B^{\prime} C^{\prime} \cong \triangle A^{\prime} D^{\prime} C^{\prime}$. Furthermore, by SAS we have $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$, and if we combine the observations of this and the preceding sentence we also obtain $\triangle A D C \cong \triangle A^{\prime} D^{\prime} C^{\prime}$. These two congruences yield the following equations involving angle measurements:
$|\angle B A C|=\left|\angle B^{\prime} A^{\prime} C^{\prime}\right|,|\angle D A C|=\left|\angle D^{\prime} A^{\prime} C^{\prime}\right|,|\angle B C A|=\left|\angle B^{\prime} C^{\prime} A^{\prime}\right|,|\angle D C A|=\left|\angle D^{\prime} C^{\prime} A^{\prime}\right|$
Since we are dealing with convex quadrilaterals, we know that C and C^{\prime} lie in the interiors of $\angle B D A$ and $\angle B^{\prime} D^{\prime} A^{\prime}$ respectively, and similarly we know that D and D^{\prime} lie in the interiors of $\angle B C A$ and $\angle B^{\prime} C^{\prime} A^{\prime}$ respectively. If we combine this with the additivity of angle measurements and the previous observations of this paragraph, we obtain the following equations:

$$
\begin{aligned}
|\angle B A D| & =|\angle B A C|+|\angle D A C|=\left|\angle B^{\prime} A^{\prime} C^{\prime}\right|+\left|\angle D^{\prime} A^{\prime} C^{\prime}\right|=\left|\angle B^{\prime} A^{\prime} D^{\prime}\right| \\
|\angle B C D| & =|\angle B C A|+|\angle D C A|=\left|\angle D^{\prime} C^{\prime} A^{\prime}\right|+\left|\angle B^{\prime} C^{\prime} A^{\prime}\right|=\left|\angle B^{\prime} C^{\prime} D^{\prime}\right|
\end{aligned}
$$

This completes the verification of all eight conditions in the definition of classical congruence.-
(b) The two kites are also congruent in this case, but the argument is different. We are now given that the four corresponding edges have equal length, and we are also given that $|\angle B A C|=$ $\left|\angle B^{\prime} A^{\prime} C^{\prime}\right|$. Since $\left[A C\right.$ and $\left[A^{\prime} C^{\prime}\right.$ bisect $\angle B A D$ and $\angle B^{\prime} A^{\prime} D^{\prime}$ respectively, it follows that $|\angle B A D|=$ $\left|\angle B^{\prime} A^{\prime} D^{\prime}\right|$. Furthermore, since $|A D|=|A B|=\left|A^{\prime} B^{\prime}\right|=\left|A^{\prime} D^{\prime}\right|$ we have isosceles triangles $\triangle B A D$ and $\triangle B^{\prime} A^{\prime} D^{\prime}$, and $\triangle B A D \cong \triangle B^{\prime} A^{\prime} D^{\prime}$ by SAS. Therefore $|B D|=\left|B^{\prime} D^{\prime}\right|$ and

$$
|\angle A B D|=\left|\angle A^{\prime} B^{\prime} D^{\prime}\right|=\left|\angle A^{\prime} D^{\prime} B^{\prime}\right|=|\angle A D B|
$$

where the middle equality holds because the triangles are isosceles.
If we now combine $|B D|=\left|B^{\prime} D^{\prime}\right|$ with the defining conditions for the kites, we also obtain $\triangle D B C \cong \triangle D^{\prime} B^{\prime} C^{\prime}$ by SSS. The two triangles in the preceding expression are isosceles, so we also obtain the following:

$$
|\angle D B C|=\left|\angle D^{\prime} B^{\prime} C^{\prime}\right|=\left|\angle B^{\prime} D^{\prime} C^{\prime}\right|=|\angle B D C|, \quad|\angle B C D|=-\left|\angle B^{\prime} C^{\prime} D^{\prime}\right|
$$

Finally, since kites are convex quadrilaterals we know that B and B^{\prime} lie in the interiors of $\angle A D C$ and $\angle A^{\prime} D^{\prime} C^{\prime}$ respectively, and similarly we know that D and D^{\prime} lie in the interiors of $\angle A B C$ and $\angle A^{\prime} B^{\prime} C^{\prime}$ respectively. If we combine the obsevations thus far with the additivity property of angle measurement, we see that

$$
|\angle A B C|=|\angle A B D|+|\angle D B C|=\left|\angle A^{\prime} B^{\prime} D^{\prime}\right|+\left|\angle D^{\prime} B^{\prime} C^{\prime}\right|=\left|\angle A^{\prime} B^{\prime} C^{\prime}\right|
$$

which means the hypothesis in (a) is true in this case, and by that case we know that the two kites are also congruent under the hypotheses in (b).-

