MORE EXERCISES FOR WEEK 01

The following exercises deal with consequences of the Incidence Axioms and the Ruler Postulate. Assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d)$ or $(\mathbf{P} ; \mathcal{L} ; d)$ is a system which satisfies these axioms.
5. Suppose that $A \neq B$; if $A B$ is the line joining A to B, prove that $A B=[A B \cup[B A$.
6. Suppose that $A * B * C$; prove that $[A B=[A B] \cup[B C$.
7. Let P be a plane, let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be noncollinear points on P, let \mathbf{z} be a point which is not on P, and let \mathbf{u} and \mathbf{v} be distinct points on the line $\mathbf{c z}$ satisfying $\mathbf{u}, \mathbf{v} \neq \mathbf{c}$. Show that the planes P, abu and abv are distinct.
8. If P_{1}, P_{2} and P_{3} are distinct planes in a 3 -space \mathbf{S}, show that their intersection is either the empty set, a single point or a line. Describe examples in ordinary geometry for which the intersections are of each (mutually exclusive) type.
9. Suppose that A, B, C, D are four noncoplanar points in a 3 - space \mathbf{S}. Explain why the lines $A B$ and $C D$ are disjoint but not coplanar (in other words, they form a pair of skew lines).
10. Let L be a line in a 3 -space \mathbf{S}, and let X be a point which does not lie on L. Using the Incidence Axioms, prove that there is a unique plane P such that $X \in P$ and $L \subset P$. [Hint: If A and B are two points of L, why are A, B and X noncollinear?.]
11. Suppose that we are given three distinct lines L, M, N in a 3 -space \mathbf{S} such that (i) the lines all contain some point $X,(i i)$ each of the lines has a point in common with a fourth line K which does not contain X. Prove that there is a plane containing all four lines. [Hint: Draw a sketch of the situation to get some insight.]
12. Suppose that we are given points A, B, C and X, Y, Z in a plane or 3 -space such that $A * B * C$ and $X * Y * Z$ both hold, and in addition we have $d(A, C)=d(X ; Z)$ and $d(B, C)=d(Y, Z)$. Prove that $d(A, B)=d(X, Y)$. [If equals are subtracted from equals, the differences are equal.]

