Undefined concepts
Euclid tried to define entry thing - not formally possible
$2 D$ geometry - Assume given a set P, call its members points. (Nonempty!) subset we shall call lines. $\mathcal{L}=$ proper subsets
Assume the following axioms (Incidence) (I1) Given to distinct points, there is a unique line containing them.
(I2) Every line contain $\geqslant 2$ points.
Models for axioms Ide ally, ordinneny geometry
Also, $S=$ es with $\geqslant 2$ elements, $\mathcal{L}=$ all
subset with exactly two elements.
and many mare...
NOTATION $x y=$ lime cont $x+y$
Only one noteworthy theorem.
If $L \neq M$ are lines in P, then In M has at most un paint.

Proof Say $x \neq y$, bu th in LcM.
By I3 there is only one line N so $x, y \in M$. But L o M have this property. So mut hare $L=M$. COLLNEAR SET $A, A \subseteq L$ some lime.
31) geometry S woweurtty cot
$\mathcal{L}=$ proper cubsetfamily
$P=$ dis o onicht from ono the disjoint from 2
First two axioms plus
(I3) Giver a mon collinear subset $\{x, y, z\}=B$, the is a unique plane P cant a in ing B. (I4) It x, y distinct in P, then $x y \subseteq P$.
(IF) I) P and Q are planes such that $P \neq Q$ then $P \cap Q$ is a line.

(IS) Every plane has $\geqslant 3$ points.

Two consequences (i) Even $^{\text {mine }} L$ and $x \notin L$, there is a unique plane P so $L \subseteq P$ and $x \in P$.
(2) If two distinct lines meet at a single pt.p than they determine a p lame.
(1)

(2)

Pictures make logietrauspanant, but are not proofs them Solves!

Now we need to add mere data
Distance Postulates
Ruler Postulate
Distance $d: S \times S \longrightarrow[0, \infty)$ goon

$$
\begin{aligned}
& d(x, y) \geqslant 0 \text {, equality } \Leftrightarrow x=y \\
& d(x, y)=d(y, x), \quad\left[N_{0} \text { triangle in equality } y+1\right]
\end{aligned}
$$

Ruder Tare are 1-1 courespaduces

$$
\begin{aligned}
f: L(\text { each line }) & \longleftrightarrow \mathbb{R} \text { so that } \\
d(x, y) & =|f(x)-f(y)| .
\end{aligned}
$$

(Placement)
Strong Rula-Property
Given $x \neq y$ in L, can fid $f s o$
that $f(x)=0, f(y)>0$.
How to dense this conclusion Take any f_{0} Let $\varepsilon_{0}=1$ if $f_{0}(x)<f_{6}(y), \varepsilon_{1}=-1$ otherwise. Chock that $g(t)=\varepsilon_{0}\left[f_{0}(t)-f_{0}(x)\right]$ is $1-1$ and $d\left(t_{1}, t_{2}\right)=\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right|$.

$$
\begin{aligned}
& 1-1 g\left(t_{1}\right)=g\left(t_{2}\right) \Rightarrow \\
& \varepsilon_{0}\left[f_{0}\left(t_{1}\right)-f_{0}(x)\right]= \\
& \varepsilon_{0}\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right] \\
\Rightarrow & f_{0}\left(t_{1}\right)-f_{0}(x)=f_{0}\left(t_{2}\right)-f_{0}(x) \Rightarrow f_{0}\left(t_{1}\right)=f_{0}\left(t_{2}\right) \Rightarrow
\end{aligned}
$$

$$
t_{1}=t_{2} \text { since } f_{0} \text { is } 1-1 \text {. }
$$

onto Let $a \in \mathbb{R}$. Want $a=\left[f_{0}(t)-f_{0}(x)\right] \varepsilon_{0}$ sane Well, $\varepsilon_{0} a=f_{0}(t)-f_{0}(x), \varepsilon_{0} a t f_{0}(x)=f(t)$ Suggests the right coo ice of t. Substitute (wank back ward 1) to whifys that $a=g(t)$.
distancepresering $d\left(t_{1}, t_{2}\right)=\left|f_{0}\left(t_{1}\right)-f_{0}\left(t_{2}\right)\right|$ is given.

$$
\begin{aligned}
& \text { P.H.S }=\left|\left[f_{0}\left(t_{1}\right)-f_{0}(x)\right]-\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right]\right| \\
& \text { and }\left|\varepsilon_{0}\right|=1 \text { meant +hor } 1 \\
& \left|\varepsilon_{0}\left(f_{0}\left(t_{1}\right)-f_{0}(x)\right]-\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right]\right|= \\
& \left|\varepsilon_{0}\left[f_{0}\left(t_{1}\right)-f_{0}(x)\right]-\varepsilon_{0}\left[f_{0}\left(t_{2}\right)-f_{0}(x)\right]\right|= \\
& \left|g\left(t_{1}\right)-g\left(t_{2}\right)\right|
\end{aligned}
$$

Why de we need this?
Giver three paints an a line, we "see" that one is between the other two. This was only discussed casually in Euclid, but it is absolutely essential tor a logic ally sound treat meant of classic al geometry.
RECALL When is $|a+b|=|a|+|b|$ in \mathbb{R} ? Either $a, b \geqslant 0$ or $a, b \leq 0$.
Define $a+b * c(b$ is between $a+c) \Leftrightarrow$

$$
d(a, c)=d(a, b)+d(b, c)
$$

This gives all we nub. The following properties are "obvious" but anast be verified.

Betweenness and ruler functions
Theorem On line L with ruler function, $a * b * c \Leftarrow f(a)<f(b)<f(c)$ or $f(a)>f(b)>f(c)$.

Derivation $|p+q|=|p|+|q| \Longleftrightarrow$
$p, q \geqslant 0$ or $p, q \leqslant 0$. Noun let $p=f(a)-f(b)$

$$
\begin{aligned}
& \text { I } q=f(b)-f(c) \text {, so } p+q=f(a)-f(c) \text { and } \\
& |p+q|=|p|+|q| \Leftrightarrow d(a, c)=d(a, b)+d(a, c) .
\end{aligned}
$$

The case $p, q \geq 0$ corresponds to $f(a)>f(k)>f(c)$, and $p, q \leq 0$ corresponds to $f(a)<f(b)<f(c)$.
Theorem Given $1>1 q$ distinct, L, onetonly we is between the other two.
Proof Six cures
$f(p)<f(g)<f(r) \quad f(q)<f(r)<f(p) \quad f(q)<f(p)<f(r)$

$$
f(p \gg f(q) \geqslant f(r) \quad f(0)>f(r) \geq f(p) \quad f(q)>f(p)>f(r)
$$

quotureen r between p between

The following aretypical appliactions which are meoded for more substantial results.
(1) $a * b * c+b^{*} x * c \Rightarrow a * x * c$

First Find ruler fun es $f(a)<f(b)$.
By perdevioul, hare $f(a)<f(b)<f(c)$.
Nou $b-x+c \Rightarrow$ aither $f(b)<f(x)<f(e)$ or
$f(l)>f(x)>f(c)$. Secand violates prevsous conclusion, so $f(a)<f(b)<f(x)<f(c)$.
(2) $a * x * c+a^{*} y * c \Rightarrow a^{*} x^{*} y$ or $a * y * x$.

Cluote voler $f(a)=0, f(c)>0$.

$$
\begin{aligned}
& \begin{array}{l}
0<f(x)<f(c) \\
0<f(y)<f(e)
\end{array} \text { Why? } \\
& \text { So Rither } 0<f(x)<f(y) \text { or } 0<f(y)<f(x) \text {. } \\
& \text { Dictionang } \\
& \text { open segt }(A B) \quad a+x+b \quad f(x) \in(f(a), f(b)) \\
& \begin{array}{ccc}
\text { clused ray }[A B & x=a, a * x+b, x=b, a+b-b x & f(x) \in[f(a), f(1)) \\
\text { open ray }(A B & x \in[A B-\{A\} & f(x) \in(-\infty, f(a)]
\end{array} \\
& \text { opp coced vay }\left[A B^{\circ P}\right. \\
& \text { opep eqpery lab op } \\
& \begin{array}{ll}
x=A a-x \in L-\{A B & f(x) \in(-\infty, f(a)] \\
x \in E A B & f(x) \in(-\infty, f(a)) \\
x \in L-[A B &
\end{array}
\end{aligned}
$$

