Plane separation
A concept related to betweeniness, also discussed casually in Euclid hut requires a logically sound treatment.

Plane P, line $L \subseteq \dot{P}, X \not Y Y$ in P but not L

same side of L oppositesides of L Notice the second holds \Leftrightarrow the lines L and $X Y$ met at a point between $X \neq Y$.
Plane Separation Postulate Lt P as aboveThen P-L is a union of turn dopisjoint sets A\&B such that
(1) If $X_{X Y} Y$ in either A on B, then $(X Y) \leq$
the appropriate sat $(A+B$ are convex) No dents or holes in a convex sot convex $(x-y)$

(2) $X \in A \propto Y \in B \Rightarrow \operatorname{Ln}(X Y) \neq \varnothing$. $\frac{\text { Space separation postulate Simile aw, bat }}{5 \text { Siren }}$ replace $\left\{\begin{array}{l}\text { Sine } \\ \text { plane }\end{array}\right\}$ with $\left\{\begin{array}{l}\text { plane } \\ \text { space }\end{array}\right\}$.

The second in plies the finest forall planes in the 3-spare (ns to be used vary much).
Algebra yuilds line separation: L line, $X \in L$.
Then $L-\{X\}=$ two given rays (AB\& (AC
nf. (1) X, Y on one open nay $\Rightarrow(X Y) \subseteq$ open nay
(2) X in ore, $Y_{\text {ing thin }} \Rightarrow X * A * Y$.
(Use rularfunction!)
Theorem Lx M lines meetinqat X, $Y+Z$ in $M-\{x\}$.
(1) Y, Z ow someside of $L \Leftrightarrow$ either

$$
X * Y * Z \text { or } X * Z * Y
$$

(2) Y, Z on opposite sides $\Leftrightarrow Y * Z * X$,

Vercicetion One of X, Y, Z is between the other wo (and ongtone). Enough to check (2) is true.
\Leftrightarrow True by Plane Separation Postulate. (\Leftrightarrow) Suppose on same side Which of $X * Z * Y, X * Y * Z, Z * X * Y$ is true? Why not the hestione? Z, Y on sameside $\Rightarrow(Z Y) \leq$ that side $\Rightarrow X_{\text {is tor. But }}$ the side is cat aimed in $L-\{X\}$, contradiction.

Tho orem. If $A+B$ are convex, so is $A \cap B$.
Proof Let $X, Y \in A \cap B$.

$$
\left.\begin{array}{rl}
\text { Thew } X, Y \in A & \Rightarrow(X Y) \subseteq A \\
B & \Rightarrow(X Y) \subseteq B
\end{array}\right\} \text { Hence }(X Y) \leq
$$

Suffices to define othernegions (convex). ANGLES. A, B, C noncollinear.

$$
\angle A B C=[\overline{B A} \cup[B C \quad B<C
$$

Forms straight angles and degenerate angles $A C$ are NOT angles!!

Interior of an angle
Int $\& A B C=A$-side $B C \cap C$-side $A B$ (edges notincheded!)

Simple consequence. If $x \in A C$, then

$$
X \in \text { Int } \angle \angle B A C \text {. }
$$

Prat $A * X * C \Rightarrow X+A$ on same side $B C$ $x+C$ on same side $A B$.
Exeverse Sauce conclusion of $Y \in\left(B X_{*}\right.$
(Y X same side of $B C$ and. $A B$)
Interior of trio angle $\triangle A B C=$
$[A B] \cup[R C] \cup[A C]$
Int $\triangle A B C=$
In $+\triangle A B C \cap$ Int $\angle B C A \backsim$ Int $\angle C A B$
Exercise. It's the intersection of angtury.

Top prove $Z \in \operatorname{Int} \triangle A B C$.

Two more substantial results IN THEPLANE
Pasch's Theorem Given $\triangle A B C$ and L such that $\operatorname{Lr}(A B)=\{x\}$. Thew one of the following is true $=(1) L A(B C) \neq \phi,(2) C \in L$ (3) $\operatorname{Ln}(A C) \neq \phi$

Used in Euclid wo a spuming it.
Proof. Three option's for $(:$ (on opp side B ar L) (same side of L as B) $C \in L$. Analyze first two cases. Opp sides: $(B C) \sim L \neq \phi$ by Plume Separation. Same side. $B t A$ on opp sides Since $B * X * C$. Hence $C+A$ on opp sides also. But then $L \cap(A C)=\phi$. Cross bow Theorem.
Green $D \in I_{n t} \triangle A B C$.
 Thin there is a point $X \in(B D \cap(A C)$.

Proof

Then $B D$ meets either ($A C$) or (AE). Note $A \notin B D$ since A, B, D not collinear by hap. Need to show $B D$ n $(A E)=\phi$. Say $Y E$ $B D \cap(A E)$. Then E, Y on same side of $A B$. So Y on opp side $A B$ as $D+C$ ($D \in I n t$ union !)

Hence (YD) meets AP, so D+Yonorp sides of $B C$, However $A * Y * E \Rightarrow Y, A, D$ all on same side of $B C$! Contradiction. Source? Assuming $B D \cap A E \neq \phi$. Hence $B D \wedge(A C) \neq \phi$. Let x bethispt. (BD.
Finally, must show ${ }_{H} \in$

$$
A * X * C \Rightarrow A \neq X \text { on same e side } B C
$$

$$
\text { Cot } X \text { on same side } A B
$$

But ats $A+D$ an same side $B C$, so likewise for D and X. By previous warmups, $X \in(B D$.

First, try to mudurstand passively, thin actively ar much ar posicitle!

Dial P A, B, C, D mo Say A, B, C, D form the vertices of a con vex quadrila teval it

Note
Two edges digt.an have ONE A also no. common end pt.

$$
\square A B C D=[A B] \cup[B C] \cup
$$

The. Given $\square A B C D$, there is

$$
[C D] \cup[A D]
$$

Proof Use Crossbar Thu, twice

$$
D-\operatorname{side} A B
$$

$$
\text { Hypotheses } \Rightarrow C \in I_{n}+\& D A B=\frac{D-\sin }{B-\text { side } A D}
$$

So ($A C_{\text {meets }}$ (BD) in some point X.
Also (BD meets ($A C$) in some paint Y.
Now $A C \neq B D$ by def of convex quad. Hence $A C \cap B D$ has at most one point. Since $X, Y \in A C \cap B D$, must have $X=Y$ and $x \in(A C)$.

