EXERCISES FOR WEEK 03

Assume that $(\mathbf{S}; \mathcal{P}; \mathcal{L}; d; \alpha)$ or $(\mathbf{P}; \mathcal{L}; d; \alpha)$ is a system which satisfies the Incidence, Ruler, Plane or Space Separation (as appropriate), Angle Measurement and Triangle Congruence Axioms; in other words, the system is a **neutral geometry**.

1. Suppose we are given triangle $\triangle ABC$, and assume that the two angle measures $|\angle BCA|$ and $|\angle CAB|$ are less than 90°. Let $D \in AC$ be such that BD is perpendicular to AC. Prove that D lies on the open segment (AC). [Hint: The Exterior Angle Theorem is needed. Why can we eliminate all possibilities except A * D * C?]

2. Suppose we are given triangle $\triangle ABC$. Prove that at least one of the following three statements is true:

- (1) The perpendicular from A to BC meets the latter in (BC).
- (2) The perpendicular from B to CA meets the latter in (CA).
- (3) The perpendicular from C to AB meets the latter in (AB).

[*Hint:* How many angles in a triangle are either right or obtuse?]

Sketch an example where all three statements are true, and sketch an example where only one statement is true.

3. (a) Suppose that we are given $\angle ABC$ such that [BD bisects $\angle BAC$, and let $E \in (BA$ and $F \in (BC$ be such that $|\angle DEB| = |\angle DFB|$. Prove that |DE| = |DF|. [Note: At this point we do not know whether or not the angle sum of a triangle is 180° .]

(b) Suppose we are given isosceles triangle $\triangle ABC$ with |AC| = |BC|, and we have points $D \in (AC)$, $E \in (BC)$ such that |AD| < |BE|. Prove that $|\angle ADE| < |\angle BED|$.

4. Given $\triangle ABC$, let X, Y and Z be points on the open segments (AB), (BC) and (AC) respectively; by a previous exercise, we know these points are not collinear and hence form the vertices of a triangle. Prove that the sum of the lengths of the sides of $\triangle ABC$ is greater than the sum of the lengths of the sides of $\triangle ABC$.

5. Let X be a point in the plane P. Prove that there is a pair of perpendicular lines L and M in P which meet at X and that there is no line N in P through X which is perpendicular to both L and M.

6. (Half of Euclid's Fifth Postulate) Let AB be a line, and let C and D be points such that A, B, C and D are coplanar and both C and D lie on the same side of AB. Prove the following:

(a) If the open rays (AC and (BD have a point in common, then $|\angle CAB| + |\angle DBA| < 180^{\circ}$. [*Hint:* Why is there a triangle $\triangle ABE$ with $E \in (AC \cap (BD?)]$

(b) If the lines AC and BD meet at a point on the side of AB which is opposite the side containing C and D, then $|\angle CAB| + |\angle DBA| < 180^{\circ}$.