EXERCISES FOR WEEK 03

Assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the Incidence, Ruler, Plane or Space Separation (as appropriate), Angle Measurement and Triangle Congruence Axioms; in other words, the system is a neutral geometry.

1. Suppose we are given triangle $\triangle A B C$, and assume that the two angle measures $|\angle B C A|$ and $|\angle C A B|$ are less than 90°. Let $D \in A C$ be such that $B D$ is perpendicular to $A C$. Prove that D lies on the open segment $(A C)$. [Hint: The Exterior Angle Theorem is needed. Why can we eliminate all possibilities except $A * D * C$?]
2. Suppose we are given triangle $\triangle A B C$. Prove that at least one of the following three statements is true:
(1) The perpendicular from A to $B C$ meets the latter in $(B C)$.
(2) The perpendicular from B to $C A$ meets the latter in $(C A)$.
(3) The perpendicular from C to $A B$ meets the latter in $(A B)$.
[Hint: How many angles in a triangle are either right or obtuse?]
Sketch an example where all three statements are true, and sketch an example where only one statement is true.
3. (a) Suppose that we are given $\angle A B C$ such that $[B D$ bisects $\angle B A C$, and let $E \in(B A$ and $F \in(B C$ be such that $|\angle D E B|=|\angle D F B|$. Prove that $|D E|=|D F|$. [Note: At this point we do not know whether or not the angle sum of a triangle is 180°.]
(b) Suppose we are given isosceles triangle $\triangle A B C$ with $|A C|=|B C|$, and we have points $D \in(A C), E \in(B C)$ such that $|A D|<|B E|$. Prove that $|\angle A D E|<|\angle B E D|$.
4. Given $\triangle A B C$, let X, Y and Z be points on the open segments $(A B),(B C)$ and $(A C)$ respectively; by a previous exercise, we know these points are not collinear and hence form the vertices of a triangle. Prove that the sum of the lengths of the sides of $\triangle A B C$ is greater than the sum of the lengths of the sides of $\triangle X Y Z$.
5. Let X be a point in the plane P. Prove that there is a pair of perpendicular lines L and M in P which meet at X and that there is no line N in P through X which is perpendicular to both L and M.
6. (Half of Euclid's Fifth Postulate) Let $A B$ be a line, and let C and D be points such that A, B, C and D are coplanar and both C and D lie on the same side of $A B$. Prove the following:
(a) If the open rays ($A C$ and ($B D$ have a point in common, then $|\angle C A B|+|\angle D B A|<180^{\circ}$. [Hint: Why is there a triangle $\triangle A B E$ with $E \in(A C \cap(B D ?]$
(b) If the lines $A C$ and $B D$ meet at a point on the side of $A B$ which is opposite the side containing C and D, then $|\angle C A B|+|\angle D B A|<180^{\circ}$.
