MORE EXERCISES FOR WEEK 03

For the first exercise assume that $(\mathbf{S} ; \mathcal{P} ; \mathcal{L} ; d ; \alpha)$ or $(\mathbf{P} ; \mathcal{L} ; d ; \alpha)$ is a system which satisfies the axioms for a neutral geometry, and for the remaining exercises assume that the system also satisfies the Euclidean Parallel Postulate (i.e., the axioms for a Euclidean geometry.
7. If L and M are parallel lines, then by a previous exercise we know that all points of L lie on the same side of M and all points of M lie on the same side of L. Define the strip between L and M to be the set of points x such that x and L are the same side of M, and x and M are the same side of L. Prove that the strip between L and M is convex and nonempty. Specifically, prove that if $A \in L$ and $B \in M$, then the midpoint C of $(A B)$ lies in this set.
8. Suppose that $\angle A C B$ in the plane is inscribed in a semicircle; in other words, if X is the midpoint of the segment $[A B]$ then all three points A, B, C are equidistant from X. Then $\angle A C B$ is a right angle. Conversely, show that if $\angle A C B$ is a right angle then the midpoint X is equidistant from A, B and C.
9. (The other half of Euclid's Fifth Postulate) Let $A B$ be a line, and let C and D be points such that A, B, C and D are coplanar and both C and D lie on the same side of $A B$. Prove the following:
(a) The open rays ($A C$ and ($B D$ have a point in common if $|\angle C A B|+|\angle D B A|<180^{\circ}$.
(b) The lines $A C$ and $B D$ meet at a point on the side of $A B$ which is opposite the side containing C and D if $|\angle C A B|+|\angle D B A|>180^{\circ}$.
10. (Strengthened Exterior Angle Theorem) Given $\triangle A B C$, let D be a point such that $B * C * D$. Then we have $|\angle A C D|=|\angle A B C|+|\angle B A C|$.
11. (Third Angles Are Equal Theorem) Suppose we have two ordered triples of noncollinear points (A, B, C) and (D, E, F) satisfying $|\angle A B C|=|\angle D E F|$ and $|\angle C A B|=|\angle F D E|$. Then we also have $|\angle A C B|=|\angle D F E|$.
12. Prove that an isosceles triangle $\triangle A B C$ is equilateral if and only if (at least) one of the angle measurements $|\angle A B C|,|\angle B C A|$ or $|\angle C A B|$ is equal to 60°, and in this case ALL of the angle measurements above are equal to 60°.
13. Suppose that A, B, C and D (in that order) form the vertices of a parallelogram. Then we have $|\angle A D C|=|\angle C D A|,|A B|=|C D|,|A D|=|B C|$, and $|\angle B C D|=|\angle D A B|$. Also prove that

$$
|\angle A D C|=|\angle A B C|=180^{\circ}-|\angle D A B|=180^{\circ}-|\angle D C B| .
$$

14. Let L and M be parallel lines. Let X be a point on one of these lines, let Y be a point of the other line such that $X Y$ is perpendicular to L and M, let Z be another point on one of these lines, and let W be a point of the other line such that $Z W$ is perpendicular to L and M. Then we have $|X Y|=|Z W|$. - In everyday language, two parallel lines are everywhere equidistant. The common value of the numbers $|X Y|,|Z W|$, etc. is frequently called the distance between L and M.
15. Suppose we are given isosceles triangle $\triangle A B C$ with $|\angle A B C|=|\angle A C B|$, let D satisfy $B * A * D$, and suppose that $E \in \operatorname{Int} \angle D A C$ such that $[A E$ bisects $\angle D A C$. Prove that $A E$ is parallel to $B C$. [Hint: Draw a picture.]
