MORE EXERCISES FOR WEEK 03

For the first exercise assume that $(\mathbf{S}; \mathcal{P}; \mathcal{L}; d; \alpha)$ or $(\mathbf{P}; \mathcal{L}; d; \alpha)$ is a system which satisfies the axioms for a *neutral geometry*, and for the remaining exercises assume that the system also satisfies the Euclidean Parallel Postulate (*i.e.*, the axioms for a *Euclidean geometry*.

7. If L and M are parallel lines, then by a previous exercise we know that all points of L lie on the same side of M and all points of M lie on the same side of L. Define the **strip between** L and M to be the set of points x such that x and L are the same side of M, and x and M are the same side of L. Prove that the strip between L and M is convex and nonempty. Specifically, prove that if $A \in L$ and $B \in M$, then the midpoint C of (AB) lies in this set.

8. Suppose that $\angle ACB$ in the plane is inscribed in a semicircle; in other words, if X is the midpoint of the segment [AB] then all three points A, B, C are equidistant from X. Then $\angle ACB$ is a right angle. Conversely, show that if $\angle ACB$ is a right angle then the midpoint X is equidistant from A, B and C.

9. (The other half of Euclid's Fifth Postulate) Let AB be a line, and let C and D be points such that A, B, C and D are coplanar and both C and D lie on the same side of AB. Prove the following:

(a) The open rays (AC and (BD have a point in common if $|\angle CAB| + |\angle DBA| < 180^{\circ}$.

(b) The lines AC and BD meet at a point on the side of AB which is opposite the side containing C and D if $|\angle CAB| + |\angle DBA| > 180^{\circ}$.

10. (Strengthened Exterior Angle Theorem) Given $\triangle ABC$, let D be a point such that B * C * D. Then we have $|\angle ACD| = |\angle ABC| + |\angle BAC|$.

11. (Third Angles Are Equal Theorem) Suppose we have two ordered triples of noncollinear points (A, B, C) and (D, E, F) satisfying $|\angle ABC| = |\angle DEF|$ and $|\angle CAB| = |\angle FDE|$. Then we also have $|\angle ACB| = |\angle DFE|$.

12. Prove that an isosceles triangle $\triangle ABC$ is equilateral if and only if (at least) one of the angle measurements $|\angle ABC|$, $|\angle BCA|$ or $|\angle CAB|$ is equal to 60°, and in this case **ALL** of the angle measurements above are equal to 60°.

13. Suppose that A, B, C and D (in that order) form the vertices of a parallelogram. Then we have $|\angle ADC| = |\angle CDA|$, |AB| = |CD|, |AD| = |BC|, and $|\angle BCD| = |\angle DAB|$. Also prove that

$$\langle ADC \rangle = |\langle ABC \rangle = 180^{\circ} - |\langle DAB \rangle = 180^{\circ} - |\langle DCB \rangle.$$

14. Let L and M be parallel lines. Let X be a point on one of these lines, let Y be a point of the other line such that XY is perpendicular to L and M, let Z be another point on one of these lines, and let W be a point of the other line such that ZW is perpendicular to L and M. Then we have |XY| = |ZW|. — In everyday language, two parallel lines are everywhere equidistant. The common value of the numbers |XY|, |ZW|, etc. is frequently called the **distance between** L and M.

15. Suppose we are given isosceles triangle $\triangle ABC$ with $|\angle ABC| = |\angle ACB|$, let *D* satisfy B * A * D, and suppose that $E \in \text{Int } \angle DAC$ such that $[AE \text{ bisects } \angle DAC$. Prove that AE is parallel to *BC*. [*Hint:* Draw a picture.]