	Parallel Projection
	Li Mutually 11 Li Mt N transversals Li Mt N transversals
	Li mutually 11
	Lz B/ M+N transvereds
	Lz of
	etc N
	First observation A*B*C=>A*B*C
	Proof Bhir instrip between Lith (see HW).
	BELZ-side Lin Li-Ride L3 (def of ship)
	Either B'= Bor BB'= Lz. Ineithercase, B' & Eprevious] - A & B'xC'.
	B'EL previous) A & B'xC'
	Prop 1 AB = AC => A'B' = A'C' .
	Proof. Cases A=A', B=B' or C=C'
Main	1 lst + 3rd same up to switchingroler
P COUNT	to switchingroler
Cash	Ma Mi
M, KM2	
D-	B/R' Take N through B N/1Mg c/c' XABB' = XACC' (Corresp & S) XAB'B = XAC'C' (Corresp & S)
11)Ma	1XABB' = 1XACC' (Consent X CT
Millione	IXAB'BI = IX AC'CY CONEST
atend.	
	DE NOLZ Ad C'on opps.dus N
	ALC on Same Eide N
	=> C+C'on opp sides N.
	Large C & D + Col

	This implie BB, D, C ventices of LT, and
	LACC'= LACD and B'DC' are cowald &s.
Also recall	Have AB = 180 (= 1BC1) and
/ AB'B = / AC'C by	15 AC C' = (2ABB') = 14 C'B'D). Hence
remarks on	(asa) $\triangle ABB' \cong \triangle B'DC', so that$
prev. page.	-
	1A'B')= B'C'(
	Care B=B' A A' (B=B' AB = BC grien
	P=B, 1401 18C1 dans
	c' C
	1-1 A Q A / 1
	1x AA'C1 = 1x CBC'(Vertical angles 1x AA'C1 = 1x CC'A1 Alternate Internatingles.
	So A ABA' \(\times\) \(\Delta\) CBC' by ASA, and hence
	[A'B=A'B']= [C'B=C'B']. Smo condition
	Case EA,B,C3 ~ EA,B'C'3=P. Twhether M, 11 MorNo.
	A JA' Choose NIIM, so
	B. T. B' AEN
	CF C Then N + My Otherwise
	M, NM2 AEM2, which is not the case
	Jan Salar Maria Salar

Previous reasoning shows [AB"] = 1B"C".
Previous reasoning shows $ AB'' = B''C'' $. But now we have $ AB'' = B''B''C'' $.
1AB" = 1A'B', 1B" C" = 1B'C' and
finally 1A'B' = 1AB" = 1B'C" = 1B'C" = 1B'C"
mutrally 1.
Notebook Papa Theorem Li, My as before with
AceLinMz, A. *Az*Az*Am.
Deland Th
Bi ELinMz. Then
B1# *Bmo. Furtherwore, if 1Ai+1 Ail=
1Az Az I for all i, then (BiPi 1=1BzBz I fwalla,
A. I Proly reveced ing
Apply sereceding
Azi Buccessively to
Apply sereceding Apply sereceding By Successively to Linding And By And By
Ar B5
DI 12 1. 1.1. 1.1
Rational Proportionality Thum. 1, Lz Lz
as before A. E. Man Li, B. E. Man Li. De
[A. A.] L Hen (B.B.) (Arts)
1A2 A3 is rational, then 1B2B31 = A2A31 1A,A21 1A,A21

By algebra we also have $1B_1B_2I = 1B_2B_3I$ $1A_1A_2I = 1A_2A_3I_6$ Proof Lot 1/2 A31 = p, so [A2A31 [A1A2] = 1 A1A21 = 7 A1A2 Previous results shows that |Ying Y 1= v all i, so also by betweenness I rrational ArA3 Need more sophisticated work freehs about 200 years to find a solution.

Condition of Endoxus 02 x, y ETR.
Then x = y (2) (a) every positive rational of Lx Patisfies of Ly. Key rolen It Olx Ly there is some of So X & Zy o Clook at decimal expansions, for example). Del Moise 11.3-11.4 fordetails Similar Triangles DABON DDEF vertices (Similar, with ratio of Similatude=r) 1XABC = 1XDEF1, 14BCA = 14DFE, 14 CAB = 14 FD E1 and DEI - IDFI - IEFI - (Some) 1ABI - IACI - IBCI - (Some). Abstract stuff. MABC = DDEFC DEFC AABCAL AABC, AABC~ DDEF > DDEF~ AABC AARCO ADEF + DDEF DGHK = DARC NAGHK

- 1	
	A.A. Similarity Theorem Given DABC + DEF
-	A.A. Similarity Theorem Given AABC+ DEF 8+ IXBACI= (XEDF), \AABC)= [&DEF],
	Then DABENDEF.
	Proof. We also have &ACD = & DKE1.
	Let v = IDEL - Department ABICA WOEF.
	Now Suppose + \$1. Switching the valor of the triangles if neec., can assume + >10
	triangles if neec., Can assume + 21
	A
	BC (AB')=+ ABI, Let
	Take BEAB SO 1AB' = 1 AB1. Let line L through B' So that L 11BC Notice A+B+B' (r>1)
	So that LIBC
	B AC Notice A*B*B' (r>1)
1	CLAIM L& not parallel; otherwise
	<u> </u>
	LILAC + LIBC => BC 11AC) false since these
1	meet at C. Suppose L+AC meet at C. Then
	W.

LEB'-side AC + A*B*B'=) C'+ A on appointer,

So C, C'on Same side and A*C*C'. By prev. thur. Also &BAC= XB'A'C', | &ARC |= |XAB'C'|, |ZACB|= 1XAC"B". Combining with hypotheses, get 1XB'AC' [= 1XEDF], 1XAB'C' = [XDEF], and IDE = rlAB1= lAB1, & AAB'C' DEF by SAS. Will suffice to prove DABC~ DDEF. Have shown AAA + IAB' | IAC' | Dwesubstitute Bock

O > E' Then ID*FT IDET LEFT IDFT

E > D' IAON IAON IBE IACI. aguir to Hence DABC ~ DAB'C' DEF. Construction yields Cov. Given DABC + v21. Then cum find DAB'C' so B'E (AB, C'E (AC, DABC NDAB'C'.