MORE SOLUTIONS FOR WEEK 04 EXERCISES

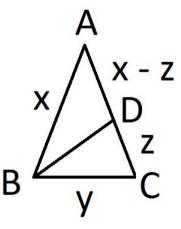
For the these exercises assume that $(\mathbf{S}; \mathcal{P}; \mathcal{L}; d; \alpha)$ or $(\mathbf{P}; \mathcal{L}; d; \alpha)$ is a system which satisfies the axioms for Euclidean geometry.

7. (a) Let L and M be perpendicular lines, and let $L \cap M = \{C\}$. Then there are two points $A, A' \in L$ so that |AC| = |A'C| = b, and there are also two points $B, B' \in M$ so that |BC| = |B'C| = a. Then $\triangle ABC$ satisfies |BC| = a, |AC| = b and $|\angle ACB| = 90^{\circ}$. This result is pretty straightforward, but it is needed for (b).

(b) The Hinge Theorem states that if $\triangle ABC$ and $\triangle DEF$ satisfy |AC| = |DF| and |BC| = |EF|, then $|\angle ACB| < |\angle DFE|$ if and only if |AB| < |DE|. We may switch the roles of the two triangles to obtain the following companion result: If $\triangle ABC$ and $\triangle DEF$ satisfy |AC| = |DF| and |BC| = |EF|, then $|\angle ACB| > |\angle DFE|$ if and only if |AB| > |DE|.

By (a) we know that there is a right triangle $\triangle DEF$ such that |AC| = |DF|, |BC| = |EF| and $|\angle DFE| = 90^{\circ}$. Therefore $|DE|^2 = |DF|^2 + |EF|^2 = |AC|^2 + |BC|^2$ by the Pythagorean Theorem and the construction of $\triangle DEF$. Since two positive real numbers u and v satisfy u < v if and only if $u^2 < v^2$, it follows that $|\angle ACB| < |\angle DFE| = 90^{\circ}$ if and only if $|AB|^2 < |AC|^2 + |BC|^2$ and $|\angle ACB| > 90^{\circ} |\angle DFE| = 90^{\circ}$ if and only if $|AB|^2 > |AC|^2 + |BC|^2$.

8. Here is a drawing:



Since [BD] bisects $\angle ABC$, the angle bisector theorem implies that

$$\frac{|BC|}{|AB|} = \frac{|CD|}{|AD|}$$

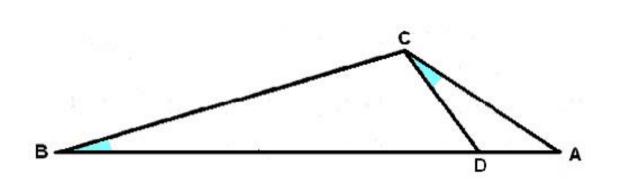
and since A * D * C holds by assumption we have |AD| = |AC| - |CD| = x - z, so that the ratio equation becomes

$$\frac{y}{x} = \frac{z}{x-z}$$

If we clear fractions in this equation we obtain yx - yz = zx, and if we solve this for z we obtain

$$z = \frac{xy}{x+y}$$
 .

9. Here is a drawing:

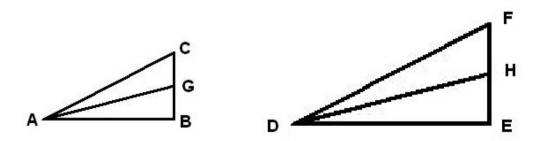


The hypothesis on angle measures and $\angle DAC = \angle CAB$ imply that $\triangle DAC \sim \triangle CAB$ by the AA Similarity Theorem. This in turn implies that

$$\frac{AB|}{AC|} = \frac{|AC|}{|AD|}$$

and if we multiply by both denominators we find that $|AC|^2 = |AB| \cdot |AD|$, which is what we wanted to prove.

10. Here is a drawing:



Let r be the ratio of similitude, so that

$$\frac{|DE|}{|AB|} = \frac{|EF|}{|BC|} = \frac{|DF|}{|AC|} = r$$

and note that $\angle GBA = \angle CBA$ and $\angle HED = \angle FED$, so that $|\angle ABG| = |\angle DEH|$. Since G and H are midpoints of [BC] and [EF], we have $|BG| = \frac{1}{2}|BC|$ and $|EH| = \frac{1}{2}|EF|$, so that

$$\frac{|EH|}{|BG|} = \frac{|EF|}{|BC|} = r .$$

Combining these, we can apply the SAS similarity theorem to conclude that $\triangle ABG \sim \triangle DEH$ with ratio of similitude r.

11. We know that $\triangle ABC$ is isosceles, and by permuting the vertices if necessary we may assume that |AB| = |AC| and $\triangle ABC \sim \triangle DEF$. Therefore we have

$$\frac{|AB|}{|DE|} = \frac{|AC|}{|DF|} \quad \text{and thus also} \quad \frac{|AB|}{|AC|} = \frac{|DE|}{|DF|}$$

Since $\triangle ABC$ is isosceles the left hand side of this equation is equal to 1, which means that |DE| = |DF| and hence $\triangle DEF$ is also isosceles.

12. By the main result on setting up coordinates, we can construct a coordinate system for an arbitrary pair of perpendicular lines L and M and ruler functions $f: L \to \mathbb{R}$ and $g: M \to \mathbb{R}$; in this construction the common point of L and M corresponds to (0,0). Starting with noncollinear points A, B, C in the given plane, take L = AB and M to be the perpendicular to L at A, and let $f_0: L \to \mathbb{R}$ and $g_0: M \to \mathbb{R}$ be ruler functions for L and M respectively such that $f_0(A) = 0 = g_0(A)$.

If D is the foot of the perpendicular L' to M through C, we claim that $D \notin L$. First note that $C \in L'$ but $C \notin L$ by construction. Now $L \neq L'$, and since both are perpendicular to M it follows that L' is parallel to L hence $D \notin L$, so that $D \neq A$. Therefore $D \notin L$ as claimed. Multiplying each of f_0 and g_0 by -1 if necessary, we obtain ruler functions f and g such that f(B) > 0 and g(C) = g(D) > 0. It follows that A corresponds to (0,0), B corresponds to (u,0) for some u > 0, and C corresponds to (x,y) where y > 0.