Using coordinates I -Circles

$$
\text { Morse, Ch. } 16
$$

Circle with center $Q$, radius $r=$ all points $X$ so $|Q X|=r$. Interior, exterior give by $|Q X|<r,|Q X|>r$.
Emphasir on two results used in cons traction's with (unmarked) straightedge and compass.
Line-Cinde Theorem $C=$ circle, $Q$ center $r$ radius, $L$ some line. If $X \in L \cap$ Int $(c)$, then $L \cap C=2$ paints.
Proof.


Take 1 to $L$ through $X$.
$X=Q \quad f: L \rightarrow \mathbb{R}$ ruler,

$$
\therefore f(Q)=0
$$

Choose $A+B$ so $f(A)=r, f(B)=-r$.
$X \neq Q|Q X|<r$ given Drop 1 to $L$ from $X$, foot $=Y$. Tho $|Q Y| \leq x<r$ (maybe $X=Y$, but doesn't matter).
$f: L \rightarrow \mathbb{R}$ ruler so $f(Y)=0$.
Take $A, B$ so $f(A, B)= \pm \sqrt{r^{2}-|Q Y|^{2}}$
${ }^{-}$positive!
By Pythagorem The, $A, B \in C$.
This is relevant to constructions with straightedge and compass, guaranteeing the existence of meeting points.

Another result on this topic.
Iwo Circe Theorem Suppose queen circles $\Gamma_{1}$ o $\Gamma_{2}$ suchthet $\Gamma_{2}$ contain a posit inside $\Gamma_{1}$ and a point outside $\Gamma_{2}$. Then $\Gamma_{1} \cap \Gamma_{2}$ is 2 points, one on each side of the line joinnig thircenters.
Note This property is tacitly assumed in the very first proposition of Euclid's Elements which constructs equilateral triangles.


L9-3
Choose coordinates so

$$
Q_{1} \leftrightarrow(0,0)
$$

$Q_{2}^{1} \leftrightarrow(d, 0)$ with $d>0$.
Typical paint on $\Gamma_{2}$ is $(x-d, y)$
where $(x-d)^{2}+y^{2}=r_{2}^{2}$. Want to know when point inside, on, outside $\Gamma_{1}$ - Algebraically wont to know whim $x^{2}+y^{2}\left\{\begin{array}{l}c \\ \bar{s}\end{array}\right\} \begin{aligned} & 1, \\ & r_{1}^{2}, B y\end{aligned}$ preceding $x^{2}+y^{2}=r_{2}^{2}+2 x d-d^{2}=\ln (x)$ Minimum value occurs for $m$ in imus $x$, which is $d-r_{2}$, maximum whom $x$ is $d+r_{2}$,

We are given one pt ciscide $I_{1}$, another outside

$$
r_{2}^{2}-2 r_{2} d+d^{2} \leqslant h(u)<r_{1}^{2}<h(v)<r_{2}^{2}+2 r_{2} d-d^{2}
$$

which means $\left|r_{2}-d\right|<r_{1}<r_{1}+d$.
Now $h(x)=r_{1}^{2}$ trunshat es to

$$
\begin{aligned}
& r_{1}^{2}=r_{2}^{2}+2 \times d-d^{2} \text { and hence } \\
& x=r_{1}^{2}+d^{2}-r_{2}^{2} / 2 d
\end{aligned}
$$

For the conclusion to hold, nece.t ruff that $|x| \angle r_{1}$ and hance

$$
-2 d r_{1}<r_{1}^{2}+d^{2}-r_{2}^{2}<2 d r_{1}
$$

This is equiv iv to

$$
-\left(r_{1}+d\right)^{2}<-r_{2}^{2}<-\left(r_{2}+d\right)^{2}
$$

We already $\rightarrow\left|r_{1}-d\right|<r_{2}<r_{1}+d$. known
this Hence we have e ur que solution for $x$, and of $y= \pm \sqrt{r_{1}^{2}-x^{2}}$, them, $(x, \pm y)$ are the two points of $F_{1} \wedge \Gamma_{2}$. Use in Euclid.
 radius

Choose $U, V \in A B$
So $U * A * B, A * B * V \quad|\cup B|=|A V|=$ $2|A B|$.
This yields $X$ and $Y$ so $\triangle A B X+\angle A B Y$ equilats

Converse to triangle inequality

$$
0<a \leq b \leq c
$$

Then there is $\triangle A B C$ with $|A B|=c,|A C|=b$ $|B C|=a \Leftrightarrow c<a+b$. We automatically
$(三)$ is the t
Proof of $(\Leftrightarrow)$


$$
\begin{aligned}
& \text { have } \\
& b \leq s c a
\end{aligned}
$$

$$
\begin{aligned}
& b-c<a t c \\
& a \leq c<b+c
\end{aligned}
$$



Apply too circlethm, $I_{1}$ centered at A

$$
F_{2} \cot B
$$

$\Gamma_{2}$ hat point inside $\Gamma_{1}(c-a, 0)$ swine $c-a<b$ Also out side $\Gamma_{1}$ $(c+a, 0)$ since $a+c \geqslant a+b \geqslant b$,

