	Voing coordinates II - Vectors
	Vectors are a powerful tool for
	working with coordinates.
-	
	EXAMPLE Midpoint Most [AB].
	· ·
	1AMI=(MBI== = 1ABI in coords, yillds
	(m1, m2, ?m3) = (=(a1+b1), =(a2+b), ?=(a3+b3)
	7 D + 3D Phial + 1 1/2 1
	2) 63D slightly different.
	Merge uting vectors m, a, b with
	and me
	coords my, mz, etc. $m = \frac{1}{2}(a+b)$.
	Cheh 16-m = = (b-a) = (a-m).
	Concurrence of D medians AD, BE, CF meet at
	AD DECE SEA
	F A U, BE, CI meet Cer
	B D C point G So
	P I
	1AG1=3 (AD), 1BG1=3 1BE1
	1CG/== 2 (CF).
	3 (01)

Proof Choose coords so A => (0,0) $A \longleftrightarrow A$ $D = \frac{1}{2}(B+Y)$ $B \longleftrightarrow B \Rightarrow E = \frac{1}{2}(\alpha+Y)$ $C \longleftrightarrow Y$ $F = \frac{1}{2}(\alpha+B)$. No Weither B nor Cis a mult afother AD meet BE at G = d+p(\frac{1}{2}\beta+\frac{1}{2}\beta-\frac{1}{2}\beta+\frac{1}{2}\beta-\f 全房+型>= 型>+(2-g)B. [2-2g=q equating coeffs. p=q and 1-q= \frac{1}{2} = \frac{3}{2} = So $|AG| = \frac{2}{3} |AB| \neq |BG| = \frac{2}{3} |BE|$ and $G = \frac{1}{3} (A + B + Y)$ Switching the roler of B+C, cer that AD meets CF also at 3 (d+B+8). Existence of circum scribed circle for ABC Want X 20 1X-A1=1X-B1=1X-C1. Equivalently can square these.

1X12-2A.X+1A12=1X12-2B.X-1B12 1X12-2A.X+1A12=1X12-2B.X-1B12 Choose coords so A () O. Get two egns. a_{x}, t, c $1b^{2} 2b \cdot x = 0$ $2b \cdot x = 1b^{2}$ Vector $1a^{2} - 2c \cdot x = 0$ $2c \cdot x = 1c^{2}$ btc not multiples of each other, so there is a unique tolat, on fax in the plane. Aristotle's Theorem. Linkis work on meteorology. - the science is wrong but the proof, I moethematically correct A + B pointry r>0 but r +1. Then the Set of all points X so that IBX = r IAXI Proof Choose coords so A CO and then |BX|= V|X| = 1B-X/2= V2 |X|2 and hence 1BP-2B.X+1X12=r21X12 let Be (6,0) where 6>0.

If X= (x, y), then egn becomes (1-r2) |X|2-26x+6=0 X2+y2-26 x + 62 = 0 Complete square on left: (x-b)2+y2--62+62
1-12+(1-12)2 Now if r<1 4 rzo then so the right side of the egn is positive and the egn defines a Civile. (compare with case v=1; geta line), Another locus problem Given I lines L+ M and real number to, whatis The locus (- set) of all X so distance (X, L) = rd(X,1M)?

Say v= 1 first. d/2 I boens? X=(u,v) & R2 d(X, L) = |w| d(Y, L) = |d-21| So equation is lul= Id-ul or 212 = (d-ru). Subtract 22 from both sides Get M=d-2du, or 2u=: = u = d Retrace to get converse What if r # 1? 12/2 should be Anything
12/3 in locus else?

	The defining egn. for this set is
	In = 2 Id-21 equivalently
	$u^2 = 4(u^2 - 2du + d^2)$ or
	$0 = 3u^2 - 8du + 4d^2$
	Apply the quadratic formula
	$0 = 3u^2 - 8du + 4d^2$ Apply the quadrate formula $u = \frac{8d + \sqrt{4d^2 - 4Vd^2}}{6} = \frac{9 \pm 4}{6}d$
	So. u=3d or 2d and there are
	two parallel lines in the set.
	More generally, suppose >> 1. Then
	2= 12 (22-2nd+d2)
	\mathcal{A}
	0 = (r2-1) 12 - 2 r2 1 + r2d2
	0 31 1 1 412 1 (3 1) 512
	W= 2rd ± 14rd - T(r=1)rd=
	$u = \frac{2r^2d \pm \sqrt{4r^4d^2 - 4(r^2-1)r^2d^2}}{2(r^2-1)}$
	wid tid 1 1 + + + + + 2
-12-12-13-13-13-13-13-13-13-13-13-13-13-13-13-	r2d ± d \ r4 - r4 + r2' - r2 ± r d
	1 Vd Vd
	$\int_{\mathcal{B}} u = \frac{rd}{r+1} \text{ or } u = \frac{rd}{r-1}$