Using coordinates II -Vectors
Vectors are a powerful tool for working with coordinates.
EXAMPLE Midpoint M of $[A B]$.
$|A M|=\left(\left.M B\left|=\frac{1}{2}\right| A B \right\rvert\,\right.$ in cords. yields

$$
\begin{gathered}
\left(m_{1}, m_{2}, ?, m_{3}\right)=\left(\frac{1}{2}\left(a_{1}+k_{I}\right), \frac{1}{2}\left(a_{2}+k_{2}\right), ? \frac{1}{2}\left(a_{2}+k_{3}\right)\right. \\
2 D+3 D \text { Blight lg disfonent. }
\end{gathered}
$$

Marge using vectors m, a, b with cords m_{1}, m_{2} etc. $m=\frac{1}{2}(a+b)$.
Che tr $|b-m|=\left|\frac{1}{2}(b-a)\right|=|a-m|$.
Concurrence of Δ medians

$A D, B E, C F$ meat at
paint G so

$$
|A G|=\frac{2}{3}|A D|,|B G|=\frac{2}{3}|B E|
$$

$$
|C G|=\frac{2}{3}|C F|_{0}
$$

Proof Choose coords so $A \leftrightarrow(0, Q)$

$$
\begin{aligned}
& A \leftrightarrow \alpha \Rightarrow D=\frac{1}{2}(\beta+\gamma) \\
& B \leftrightarrow \beta \Rightarrow{ }^{1} \leftrightarrow \\
& C \leftrightarrow \gamma=\frac{1}{2}(\alpha+\gamma) . \\
& F=\frac{1}{2}(\alpha+\beta) .
\end{aligned}
$$

$A D$ meets $B E$ at $G=$

$$
\alpha+p\left(\frac{1}{2} \beta+\frac{1}{2} \gamma-\alpha\right)=\beta+\frac{\beta}{\gamma}\left(\frac{1}{2} \alpha+\frac{1}{2} \gamma-\beta\right)
$$

$$
\begin{aligned}
& \frac{p}{2} \beta+\frac{p}{2} \gamma=\frac{q}{2} \gamma+(1-q) \beta \\
& i n g \text { coif. } p=q \text { and } 1-q=\frac{q}{2}
\end{aligned}\left[\begin{array}{l}
2-2 q=q \\
2=3 q \\
q=\frac{2}{3}
\end{array}\right.
$$

So $|A G|=\frac{2}{3}|A B| \nmid|B G|=\frac{2}{3}|B E|$.and

$$
G=\frac{1}{3}(\alpha+\beta+\gamma)
$$

Switching the voles of $B+C$, cen that $A D$ meets CF also at $\frac{1}{3}(\alpha+\beta+\gamma)$.
Existence of cir com scribed circle for $\triangle A B C$ Wont X so $|X-A|=|X-B|=|X-C|$.

Equivelentlys can square these.

$$
\begin{aligned}
& |X|^{2}-2 A \cdot X+|A|^{2}=|X|^{2}-2 B \cdot X-|B|^{2} \\
& |X|^{2}-2 A \cdot X+|A|^{2}=|X|^{2}-2 C \cdot X+|C|^{2},
\end{aligned}
$$

Choose bonds so $A \leftrightarrow 0$. Set hwoeqns.

$$
\begin{array}{ll|l}
a, x, t, c & |b|^{2}=2 \cdot b \cdot x=0 & 2 b \cdot x=\left.1 b\right|^{2} \\
\text { vector } & |a|^{2}-2 c \cdot x=0 & 2 c \cdot x=|c|^{2}
\end{array}
$$

b tc not multiples of each ot her, so there is a uniquetolut, on for x in the plane. "Aristotle's Theorem." Lir his wonk on meteordagy. the science is wrong but the proof is mathematically correct]
$A \neq B$ pounce, $r>0$ but $r \neq 1$. Thu the set of all point e X so that $|B X|=r|A X|$ is a circle. ($\begin{aligned} & \text { Suffice s to do case } r<1 \text {; } \\ & \text { switch roles of A B it } r>1\end{aligned}$) Proof Choose coands so $A \leftrightarrow O$ and then $|B X|=r|X| \Leftrightarrow|B-X|^{2}=r^{2}|X|^{2}$ ondtence $|B|^{2}-2 B \cdot X+|X|^{2}=r^{2}|X|^{2}$. let $B \Leftrightarrow(b, 0)$ where $b>0$.

If $X=(x, y)$, then eqn becomes

$$
\begin{aligned}
& \left(1-r^{2}\right)|x|^{2}-2 b x+b^{2}=0 \\
& x^{2}+y^{2}-\frac{2 b}{1-r^{2}} x+\frac{b^{2}}{1-r^{2}}=0
\end{aligned}
$$

Complete square un left:

$$
\left(x-\frac{b}{1-r^{2}}\right)^{2}+y^{2}=\frac{-b^{2}}{1-r^{2}}+\frac{b^{2}}{\left(1-r^{2}\right)^{2}}
$$

Now of $r<1$ क $r>0$ then

$$
\left(1-r^{2}\right)^{2}<1-r^{2} \text { so } \frac{1}{\left(1-r^{2}\right)^{2}}>\frac{1}{1-r^{2}}
$$

so the right side of the egn is positive and the eqn defines a circle.
(comparew.th case $r=1$; get a line).
$\frac{\text { Another locus problem Given } 11 \text { limes }}{\text { pos }}$ $L+M$ and real number r, what is the $\operatorname{loc} \cos (=s e t)$ of all X so distance $(X, L)=$ $r d(x, M)$?

Say $r=1$ first.

$X=(u, v) \in \mathbb{R}^{2}$

$$
d(X, L)=|z| \quad d(Y, L)=|d-z|
$$

So equation is $|u|=|d-u|$ or
$u^{2}=(d-u)^{2}$. Subtract u^{2} from both sides Pet $M=d^{2}-2 d u$, or $2 u=; \quad$ id
Hence $u=\frac{d}{2}$ Retrace to get converse What if $r \neq 1$?
$V \Rightarrow \frac{\Gamma^{d / 2}}{\int_{\frac{2}{3} d} \text { should ecus Anything }}$ else?

The defining equ. for this set is

$$
\begin{aligned}
& \quad|u|=2|d-u| \text { equivalently } \\
& u^{2}=4\left(u^{2}-2 d u+d^{2}\right) \text { or } \\
& 0=3 u^{2}-8 d u+4 d^{2}
\end{aligned}
$$

Apply the quadratic formula

$$
u=\frac{8 d \pm \sqrt{64 d^{2}-4 V d^{2}}}{6}=\frac{8 \pm 4}{6} d
$$

So: $u=\frac{2}{3} d$ or $2 d$ and there are two parallel lines in the set.
More generally, suppose $r>1$, Thu

$$
\begin{gathered}
u^{2}=r^{2}\left(u^{2}-2 u d+d^{2}\right) \\
0=\left(r^{2}-1\right) u^{2}-2 r^{2} u+r^{2} d^{2} \\
w=\frac{2 r^{2} d \pm \sqrt{4 r^{4} d^{2}-4\left(r^{2}-1\right) r^{2} d^{2}}}{2\left(r^{2}-1\right)}= \\
\text { So } u=\frac{r^{2} d \pm d \sqrt{r^{4}-r^{4}+r^{2}}}{r+1}=\frac{r^{2} \pm r}{r^{2}-1} \text { or } u=\frac{r d}{r-1} .
\end{gathered}
$$

