
Math 133
Fall 2021

SOLUTIONS FOR WEEK 06 EXERCISES

For these exercises assume that the coordinate plane satisfies the axioms for Euclidean plane geom-
etry, with distances and lines as described in Chapter 17 of Moise. We shall not need the angular
measure concept or its consequences explicitly.

0. The standard rules of coordinate geometry give the following identities for the equation of
the line y = mx + c joining a = (a1, a2) and b = (b1, b2):

b2 − a2
b1 − a1

= m , y − a2 = m(x− a1) , c = a2 −ma1

We shall first verify that every vector of the form a + t(b − a) corresponds to a point of the line
ab. This follows because the equations

a2 = ma1 + c , b2 = mb1 + c

(valid since the two points lie on the line with equation y = mx+ c) and elementary algebra imply
that

a2 + t(b2 − a2) = m (a1 + t(b1 − a1)) + c .

Conversely, we claim that every point (u, v) on the line y = mx + c is expressible as a + t(b − a)
for some real number t. The main task is to find t in terms of u and the data from the original
vectors:

u = a1 + t(b1 − a1)

It follows that

t =
u− a1
b1 − a1

and since v = mu + c one can verify directly that v = m (a2 + t(b2 − a2)) + c.

1. The distance between the two points (x1, y1) = (x1,mx1 + c) and (x2, y2) = (x2,mx2 + c) on
the given line is equal to√

(x2 − x1)2 + m2(x2 − x1)2 = |x2 − x1| ·
√

1 + m2

so if Ai = (xi, yi) then |A1A2| = |f(a1)− f(A2)|. It remains to check that f is 1–1 and onto.

If f(x1, y1) = f(x2, y2) then x1 ·
√

1 + m2 = x2 ·
√

1 + m2, so that x1 = x2. The latter implies
that y1 = mx1 + c = mx2 + c = y2; therefore (x1, y1) = (x2, y2) and f is 1–1. Also, if r is a real
number and

u =
r√

1 + m2

then f(u,mu + c) = r and hence f is also onto.
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2. We shall follow the hint and use the drawing to guide the discussion.

We first need to verify that A, B and C are the midpoints of [EF ], [DF ] and [DE] respectively.
To do this, it is only necessary to expand the three vectors 1

2 (D + F ), 1
2 (E + F ), and 1

2 (D + E)
using the definitions above. Next, we need to show that AB is parallel to DE, AC is parallel to
DF and BC is parallel to EF . It will suffice to show the following:

1. The lines AB and DE are distinct, the lines AC and DF are distinct, and the lines BC
and EF are distinct.

2. The difference vectors E−D and B−A are nonzero multiples of each other, the difference
vectors F −D and C − A are nonzero multiples of each other, and the difference vectors
F − E and C −B are nonzero multiples of each other.

We can dispose of the first item as follows: Since C lies on DE and not on AB, it follows that
DE and AB are distinct lines; similarly, since B lies on DF and not on AC, it follows that DF and
AC are distinct lines, and finally since A lies on EF and not on BC, it follows that EF and BC
are distinct lines. The assertions in the second item may be checked by expanding E −D, F −D,
and F − E in terms of A, B and C using the definitions. These computations yield the equations
E −D = 2(B −A), F −D = 2(C −A), and F − E = 2(C −B).

Finally, we need to verify that the altitudes MA, MB and MC of 4ABC are perpendicular
to EF , DF and DE respectively. This will imply that the three lines are also the perpendicular
bisectors for the sides of 4DEF , which means that the lines MA, MB and MC have a point in
common by a theorem from the lectures. The first perpendicularity statement follows because
MA ⊥ BC and BC parallel to EF imply MA ⊥ EF , the second follows because MB ⊥ AC and
AC parallel to DF imply MB ⊥ DF , and the third follows because MC ⊥ AB and AB parallel to
DE imply MC ⊥ DE.

3. (a) It suffices to show that either H1 ⊂ H∗
1 and H2 ⊂ H∗

2 or else H1 ⊂ H∗
2 and H2 ⊂ H∗

1 . In
fact, it suffices to consider the first case, for the second will then follow by switching the roles of
H∗

1 and H∗
2 . This is true because we know that P − L is a union of the disjoint subsets H1 and

H2, and it is also the union of the disjoint subsets H∗
1 and H∗

2 , for we can switch the roles of the
primed and unprimed variables to conclude H1 ⊃ H∗

2 and H2 ⊃ H∗
1 .

Again interchanging roles of the variables, we need only show that H1 ⊂ H∗
1 or H1 ⊂ H∗

2 . Let
p ∈ H1; then either p ∈ H∗

1 or p ∈ H∗
2 . Once again reversing the roles of variables if necessary, we

reduce to considering the case where the first alternative holds.
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Since no points of L are in any of the sets {H1, H2, H
∗
1 , H

∗
2}, we must have

H1 = (H1 ∩H∗
1 ) ∪ (H1 ∩H∗

2 )

so it suffices to show that the second summand on the right is empty. Suppose it is not, and let
q be a point in this intersection. If we apply the plane separation postulate to {H∗

1 , H
∗
2} we then

find that there is a point z ∈ L such that p ∗ z ∗ q. Since p, q ∈ H1 and the latter is convex, it also
follows that z ∈ H1; this is a contradiction because the sets L and H1 are disjoint by hypothesis.
The source of the contradiction was our supposition that H1 ∩H∗

2 was nonempty, so the latter is
false and the intersection must indeed be empty.

(b) We shall reformulate the problem to include the case of vertical lines: If L is a line in the
coordinate plane, then L is defined by an equation of the form

0 = g(x, y) = Ax + By + C

where at least on of A,B is nonzero. Theh we want to prove that the two half-planes determined
by L are the sets where g(x, y) > 0 and g(x, y) < 0; we shall denote these sets by H1 and H2

respectively. By (a) we need only show that these sets satisfy the conditions of the plane separation
postulate (nonempty, disjoint, union is the complement of L, convex, and a line segment joining a
point in one subset to a point in the other must pass through the original line).

The first thing to notice is that H1 and H2 are both nonempty. For each scalar k, consider
the point Vk = (kA, kB). We then have g(x, y) = k(A2 + B2) + C, and since at least one of
A,B is nonzero it follows that the coefficient A2 + B2 is positive. Therefore we can say that
g(Vk) = g(kA, kB) will be positive if k > −C/(A2 +B2) and g(Vk) = g(kA, kB) will be negative if
k < −C/(A2 + B2). Since there are infinitely values of k satisfying either of these inequalities, it
follows that in fact both H1 and H2 contain infinitely many points.

We also need to check that H1 and H2 are both convex; in other words, if P = (x, y) and
Q = (u, v) belong to one of these half-planes and 0 < t < 1, then the point P + t(Q − P ) also
belongs to the same half-plane. The key to this is the following chain of identities:

g
(
P + t(Q−P )

)
= g

(
x+ t(u− x), y + t(v− y)

)
= A

(
x+ t(u− x)

)
+ B

(
y + t(v− y)

)
=

(1− t)(Ax + By) + t(Ax + By) + C = (1− t) · g(P ) + t · g(Q) .

If P and Q lie on the same side of L, then either g(P ) and g(Q) are both positive or they are both
negative. Note that t and 1− t are both positive in either case. If g(P ) and g(Q) are positive, then
it follows that

g
(
P + t(Q− P )

)
= (1− t) · g(P ) + t · g(Q)

must also be positive since it is a sum of two products of positive numbers, while if g(P ) and g(Q)
are negative, then it follows that the expression is a sum of two products, each with one positive
and one negative factor, and hence in this case g

(
P + t(Q− P )

)
must be negative.

Finally, we need to show if P is in one half-plane and Q is in the other, then the open segment
(PQ) and the line L have a point in common. In the terms of the preceding discussions, this means
that we can find some t such that 0 < t < 1 and g

(
P + t(Q− P )

)
= 0.

We shall only consider the case where g(P ) < 0 < g(Q); the other case, in which g(P ) >
0 > g(Q), can be obtained by interchanging the roles of P and Q in the argument below. By the
fundamental identity displayed above, we need to find a value of t such that

0 = (1− t)g(P ) + tg(Q) = g(P ) + t
(
g(Q)− g(P )

)
.
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The solution to this equation is

t =
−g(P )

g(Q)− g(P )

where the denominator is positive since g(Q) > g(P ). By assumption g(P ) is negative, and therefore
the entire expression for t is positive. Furthermore, we also have 0 < −g(P ) < g(Q) − g(P ), so it
also follows that t < 1. Therefore, if we take t as given above, then the point P + t(Q− P ) will lie
on both the open segment (PQ) and the line L.

4. (a) By the Parallelogram Law, we need to show that C = B+D−A. The bisection hypotheses
states that 1

2 (A + C) = 1
2 (B + D), and if we multiply both sides of this equation by 2 we obtain

A + C = B + D; if we subtract A from both sides of the latter equation we obtain the desired
identity C = B + D −A.

(b) If we add D to both sides of the given equation, we obtain C = B + D − A, so by the
Parallelogram Law the points A,B,C,D (in that order) are the vertices of a parallelogram.

The next two exercises involve 3 × 3 determinants. Here is a link to a Power Point file on this topic;
most of what we need is on the first 19 pages.

https://www.slideshare.net/SeyidKadher1/determinants-68070113

We also need two additional identities, which can be verified by direct computation. It will be
convenient to write a 3 × 3 determinant as a function of its columns. Specifically, if the three
columns are given in order by E,F,G, then the determinant of the matrix will be denoted by
D(E,F,G).

(1) If two of the columns are equal, then D(E,F,G) = 0.

(2) We have D(E,F,G) = D(F,G,E) = D(G,E, F ).

5. If we expand the determinant by minors along the third column, we obtain the following:∣∣∣∣∣∣
a1 a2 x
b1 b2 y
1 1 1

∣∣∣∣∣∣ = x(b1 − b2) − y(a1 − a2) + (a1b2 − a2b1)

This is a nontrivial first degree equation in x and y because (a1, b1) 6= (a2, b2) implies that at least
one of b1 − b2 and a1 − a2 is nonzero. Direct calculation shows that the expression on the right
hand side is zero if either (x, y) = (a1, b1) or (x, y) = (a2, b2), so the equation obtained by setting
either expression equal to zero defines the line joining the original two points.

6. Before proceeding, we shall state a reformulation of the preceding exercise: Let X = (x1, x2),
Y = (y1, y2), and Z = (z1, z2) be three points in the coordinate plane. Then X,Y, Z are noncollinear
if and only if the determinant ∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
1 1 1

∣∣∣∣∣∣
is nonzero.

Given an ordered pair w = (w1, w2) of real numbers, let W denote the 3-dimensional column
vector (= 3 × 1 matrix) whose entries in order are w1, w2 and 1. We can then reformulate
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the Theorem of Menelaus to say that p ∈ bc, q ∈ ac, and r ∈ ab are collinear if and only if
D(P ,Q,R) = 0. We shall study this determinant using the following direct consequences of the
definitions for p, q, and r:

P = B + t(C −B) = tC + (1− t)B

Q = C + u(A− C) = uA + (1− u)C

R = A + v(B −A) = vB + (1− v)A

If we substitute the right hand expressions for the left hand expressions in D(P ,Q,R) and apply
the identities in the website and in (1) and (2) above to simplify terms, we see that the three points
of interest are collinear if and only if

D(P ,Q,R) = tuvD(C,A,B) + (1− t)(1− u)(1− v)D(B,C,A) =

( tuv + (1− t)(1− u)(1− v) ) ·D(A,B,C) = 0 .

The noncollinearity of a, b, and c implies that D(A,B,C) 6= 0, and therefore the condition for p,
q, and r to be collinear reduces to the equation (1− t)(1− u)(1− v) = −tuv.
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