This should be added at the indicated point of Lecture 12, page 4

Theorem. If $\mathbf{f}: \mathbf{P} \longrightarrow \mathbf{P}$ is a plane isometry and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are noncollinear points of \mathbf{P}, then $f(A), f(B), f(C)$ are also noncollinear and $|\angle A B C|=|\angle f(A) f(B) f(C)|$.

Proof. By the isometry assumption we have $|A B|=|f(A) f(B)|,|B C|=|f(B) f(C)|$, and $|A C|=|f(A) f(C)|$. Therefore by the S.S.S. congruence axiom we have $\triangle A B C$ $\cong \triangle f(A) f(B) f(C)$, and the latter implies that $|\angle A B C|=|\angle f(A) f(B) f(C)|$.

