Axiomatic Systems
Neutral geometry $(P, \mathcal{L}, d, \alpha)$ or $(S, \mathscr{L}, P, d, \infty)$ are the data. They satisfy
Incidence Axioms
Distance and Ruler Axioms
Plane Separation Axiom
Angle Measurement Axioms
Thangle Congruence Axioms Euclidean geometry also satisfies
Euclidean Parallel Postulate.
Long standing question:
Does neutral \Rightarrow Euclidean?
Answer shown to be NO in 19 th century.
What does this mean?
Need more insight into axiom at ic math systems, queen by
a, k, a
DATA Usually some set and subsets, functions
Postulates
Assumptions AXIGMS Rules which the data satisfy.

M, nimal Property Must be (relatively) logically consistent
How to stow Build example within set theory satisfying the givenconditions. MODEL For example, start with monneg N, show existence of negatives consistent by constructing \mathbb{Z} from them.
WhY ReLATIVELY? Work of K. Gödel about 1930 shows we can never be sure that the standard axioms for N(duc to G. Beano) are cons istent. Problem arises from infinite nature of \mathbb{N}. (Thus far, no examples beyond "artificial" ones) Redundancy Question Giver a systam with data D and axioms A, let S be a meaningful statement about the system. What does it mean to Say that S cannot be proved as a theorem in the system?
ANSWER Con strict a model of the system in which S is false.

Ex ample from incidence geometry
Consider the statement,
Given a line L and pain $t X \notin L$,
there is a line M so that $X \in M$, $M \leq$ plane of L and x, and $L \cap M=\phi$.

Proof that statement is a wot a con sequence of the axioms Construct an incidence plane in which every pair of lines hat a common point.

Look at the 7 point plane from cary in the course
Notice there are also 7 lines

Verifying the axioms is tedians bit straightforward.
Forexample, $\{A, B\} \subseteq\{A, B, C\}$ but not $\{A, D, E\},\{B, D, F\},\{A, G, F\},\{B, G E\},\{C, G, D\}$ or $\{C, F, E\}$.
$L 13-4$
There ane $\binom{7}{2}^{-1}$ other point pairs that must be considered. Suinitancy one must look at $\binom{7}{2}$ intersection, of two lines. STONE AEE METHOD There are for more efferent ways to verify this example L:
Note also Existence of at most one parallel does not foll O w.
$P=$ set with $\geqslant 5$ elam ants
$\mathcal{L}=$ two point subsets
Both CD and CE are parallel to

AB
Lung rs. short lists of axioms/data
Advantages LONG Faster development of material. (Examples: Angular measure, area axioms in 2D, volume axioms in 3D). SHORT Is isolates ky y ideas move clearly, easier to test for logical consistency.
Disadvantages, LONG Much redundancy, risk of in formation voerload, contrary in spin it to Euclid's Elements.

213-5
SHoRT: Proofs that some axioms in long lists can be extremely long and nonelamentary. (Example: Verification of 3D volume axioms require concepts from integral cal culus). Angle measurement turns out to be redundant if we ass uni in cidence, distancel ruler, plane/space separation plus the following

Inthir situation, $|C D|=\left|C^{\prime} D^{\prime}\right|$. Requires Lone Digressions!!

Catequerical vs. non categorical axiom systems
Categorical Given two systems satisfying the data and axiom stipulations, each is structurally equivalent to the other.
Example. Euclidean planes or 3-spaces $1-1$ corresp ondence, preserving limes, nonbines (t pane, nomplanes), distance, angle measure.

However, some taine we want non categorical clatal axiom com binations.
Examples Gystans with $t,-, x$ (maybe not : -) and distributive lavs

$$
a(b+c)=a b+a c,(a+b) c=a c+b c
$$

number systems, polynomials, sq. matrices. *(where $a b$ t ba need not be equal).

Yields results valid in a broad range of examples.

Last but not least Euclidean geometry is consistent (Mo is, Ch. 26).
One simple stop (I1) Unique line in plane joining two points... $A=\left(a_{1}, a_{2}\right), B=\left(b_{1}, b_{2}\right)$. Define 2 by
" $\frac{y-a_{2}}{x-a_{1}}=\frac{b_{2}-a_{2}}{b_{1}-a_{1}}{ }^{\prime \prime}$ More correctly,

$$
\left(y-a_{2}\right)\left(b_{1}-a_{1}\right)=\left(x-a_{1}\right)\left(b_{2}-a_{2}\right)
$$

Check this is the uni que line cont airing $A+B$.

