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Introduction to non – Euclidean geometry 
 

Mathematics 133, Fall 2021  
  

Over the course of the nineteenth century, under pressure of developments 
within mathematics itself, the accepted answer [ to questions like, “What is 
geometry?”] dramatically broke down. … Not since the ancient Greeks, if 
then, had there been such an irruption [or incursion] of philosophical ideas 
into the very heart of mathematics. … Mathematicians of the first rank … 
found themselves obliged to confront questions about … the status of 
geometry …  The answers they gave did much to shape the mathematics of 
the twentieth century. 

 

W. Ewald (1954 –), Bulletin (New Series) of the American 

Mathematical Society, Vol. 40 (2002), pp. 125 – 126. 
 

The fifth and final postulate in Euclid’s  Elements  differs from the latter’s other 
assumptions in several respects.   All of the remaining statements are fairly simple (for 
example, lines can be extended indefinitely in either direction, or a circle can be drawn 
with arbitrary center and radius), but the last one is fairly complicated by comparison.  In 
particular, it takes more words to state this postulate (both in English and the original 
Greek) than are needed for the remaining four postulates combined. Furthermore, the 
proofs of the first  28  results in the  Elements  do not use the Fifth Postulate.  In 
addition, there are general questions whether this postulate corresponds to physical 
reality because it involves objects which are too distant to be observed or questions 
about measurements that cannot necessarily be answered conclusively because there 
are always limits to the precision of physical measurements.   
 

For these and other reasons, it is natural to speculate about the extent to which the 
exceptional Fifth Postulate is necessary or desirable as an assumption in classical 
geometry.  Historical evidence suggests that such questions had been raised and 
debated extensively before Euclid’s time, and for centuries numerous mathematicians 
tried to prove the Fifth Postulate from the others, or at least to find a simpler and more 
strongly intuitive postulate to replace it.   Progress on the second issue is reflected by 
the following equivalent assumption, which was suggested in the 5th century A. D. by 

Proclus Diadochus (410 – 485)  and subsequently by J. Playfair (1748 – 1819): 
 

“Playfair’s Postulate”:   Given a line  L and a point X which is not on  L,  there is a 

unique line  M  such that   X  ∈∈∈∈        M   and   L  is parallel to  M .  

 
 
 

 

 
 
During the 18th century several mathematicians made sustained efforts to understand  
what would happen if the Fifth Postulate (and logically equivalent statements) were 
false, and in early 19th century a few mathematicians concluded that such efforts would 
not yield a logical contradiction, and they concluded there was a logically sound 
alternative to the truth of the Fifth Postulate.   Later in that century other mathematicians 
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proved results vindicating this conclusion; in particular, such results prove the logical 
impossibility of proving the Fifth Postulate or replacing it by something that raises fewer 
questions.  

 
The discovery of non – Euclidean geometry had major implications for the role of 
geometry in mathematics, the sciences and even philosophy.  The following three 
quotations summarize this change as it evolved from the 17th century through the 
beginning of the 20th century. 
 

Geometry is the basic mathematical science, for it includes arithmetic, and 
mathematical numbers are simply the signs of geometrical magnitude.  

 

Isaac Barrow (1630 � 1677), Mathematical Lectures (1664 � 1666). 
 

The concept of [Euclidean] space is by no means of empirical origin, but is an 
inevitable necessity of thought.   

 

 Immanuel Kant (1724 � 1804), Critique of Pure Reason (1781). 
 

I am convinced more and more that the necessary truth of our geometry cannot be 
demonstrated, at least not by the human intellect to the human understanding.   
Perhaps in another world, we may gain other insights into the nature of space 
which at present are unattainable to us. Until then we must consider geometry as of 
equal rank not with arithmetic, which is purely a priori, but with mechanics.   

 

C. F. Gauss (1777 � 1855), Letter to H. W. M. Olbers (1817).  [ Note:  

Olbers (1758 � 1840) was an astronomer, physician and physicist, and 
he is known as the discoverer of the asteroid Pallas. ] 

 

One geometry cannot be more valid than another; it can only be more convenient.   
 

 Henri Poincaré (1854 – 1912), Science and Hypothesis (1901).   
 

We have Einstein’s space, De Sitter’s space, expanding universes, contracting 
universes, vibrating universes, mysterious universes.  In fact, the pure mathe-
matician [or theoretical physicist ] may create universes just by writing down an 
equation, and indeed if he is an individualist he can have a universe of his own. 

 

J. J. Thomson (1856 – 1940) [ discoverer of the electron] 
 

In these notes we shall discuss the mathematical theory (in fact, multiple theories) 
obtained by not assuming the Fifth Postulate, and we shall also include further 
comments on the role of geometry in modern mathematics and science. 
 
The treatment of non – Euclidean geometry in Moise is different from the one presented 
here, and the reason for our alternate treatment is that it is closer in spirit to the material 
on Euclidean geometry.     Moise’s approach involves more sophisticated methods 
which yields stronger conclusions (these are noted in Section 4).   The details appear in 
Chapters 9, 10 and 24. 
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1 : Facts from spherical geometry 
 
 

 

The sphere’s perfect form has fascinated the minds of men for millennia. 
From planets to raindrops, nature … [makes use of] the sphere.  

 

http://www.bbc.co.uk/radio4/science/fiveshapes.shtml 
 

Spherical geometry can be said to be the first non – Euclidean geometry. 
 

D. Henderson (1939 – 2018) and D. Taimina (1954 – ),  Math. Assoc. of 
America Notes No. 68 (2005), p. 59. 

 

Before we discuss the material generally known as non – Euclidean geometry, it will be 
helpful to summarize a few basic results from spherical geometry.   
 

As noted in the following quote from  http://www.physics.csbsju.edu/astro/CS/CSintro.html , it is 
natural to think of the sky as a large spherical dome and to use this as a basis for 
describing the positions of the stars and other heavenly bodies: 
 

If you go out in an open field on a clear night and look at the sky, you have 
no indication of the distance to the objects you see. A particular bright dot 
may be an airplane a few miles off, a satellite a few hundred miles off, a 
planet a many millions of miles away, or a star more than a million times 
further away than the most distant planet. Since you can only tell direction 
(and not distance) you can imagine that the stars that you see are 
attached to the inside of a spherical shell that surrounds the Earth. The 
ancient Greeks actually believed such a shell really existed, but for us it is 
just a convenient way of talking about the sky.  

 

The following photograph of a planetarium display provides a graphic illustration: 
 

 
 
In fact, the historical relationship between astronomy and spherical geometry goes much 
further than simple observations.  When some of the first attempts at scientific theories 
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of astronomy were developed by Eudoxus of Cnidus (408 � 355 B.C.E.) and Aristotle 

(384 � 322 B.C.E.) during the 4th century B.C.E., the ties between spherical geometry 
and astronomy became even closer, and both of these subjects were studied at length 

by later Greek scientists and mathematicians, including Hipparchus of Rhodes (190  � 

120 B.C.E.), Heron of Alexandria (c. 10 A.D. � 75), Menelaus of Alexandria (70 � 130), 

and (last but not least) Claudius Ptolemy (85 � 165).   
 

Another subject which began to emerge at the same time was trigonometry, which was 
studied both on the plane and on the surface of a sphere; not surprisingly, spherical 
trigonometry played a major role in efforts by ancient astronomers to explain the motions 
of stars and planets.    In particular, during the Middle Ages both Arab and Indian 
mathematicians advanced spherical trigonometry far beyond the work of the ancient 
Greek mathematicians.   During the later Middle Ages, practical questions about 
navigation began to influence the development of spherical geometry and trigonometry, 
and there was renewed interest which led to major advances in the subject continuing 
through the 18th century.   Due to their importance for navigation and astronomy, 
spherical geometry and trigonometry were basic topics in high school mathematics 
curricula until the middle of the  20th century, but this has changed for several reasons 
(for example, one can use satellites and computers to do the work that previously 
required human vision and computation, and to do so more reliably).  Our main purpose 
here is to describe the main aspects of spherical geometry, so some proofs and 
definitions will only be informal and other arguments will not be given at all. 
 
 

Great circles 
 
 

In Euclidean plane and solid geometry, one reason for the importance of lines is that 
they describe the shortest paths between two points.  On the surface of a sphere, the 
shortest curves between two points are given by  great circles. 
 

Definitions.   Given a point  X  in  ����
3
  and  k  >  0,  the  sphere  ΣΣΣΣ  of radius  k  and 

center  X  is the set of all points  Y  in  ����
3
  such that  �XY�  �  k.   A  great circle  on 

this sphere  ΣΣΣΣ     is a circle given by the intersection of  ΣΣΣΣ  with a plane containing  X. 
 

The following result yields a large number of geometrically significant great circles. 
 

Proposition 1.   Let  ΣΣΣΣ  be a sphere as above with center  X,  and let  Y  and  Z  be two 

points of  ΣΣΣΣ.... 

1. If  X,  Y  and  Z  are not collinear, then there is a unique great circle on  ΣΣΣΣ  

containing  Y  and  Z. 

2. If  X,  Y  and  Z  are collinear, then there are infinitely many great circles on  ΣΣΣΣ  

containing  Y  and  Z. 
 

The second possibility arises when the segment  [YZ]  is a diameter of the sphere; in 
this case we often say that  Y  and  Z  are antipodal (pronounced ann–TIP–o–dal). 
 

Sketch of proof.   The results follow by considering set of all planes containing the three 
points.  In the first case there is only one, but in the second there are infinitely many 
planes containing the line  YZ.���� 
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Major and minor arcs.    If  A  and  B  are points on a circle  Γ,Γ,Γ,Γ,  then they determine 
two arcs.  If the points are antipodal, the two arcs are semicircles, and if they are not 
antipodal one has a  major arc  and a  minor arc.  One way of distinguishing between 

these arcs is that the minor arc consists of  A, B  and all points on the circle  ΓΓΓΓ     which lie 
on the opposite side of  AB  as the center  Q,  while the major arc consists of  A, B  

and all points on the circle  ΓΓΓΓ  which lie on the same side of  AB  as  Q.   We shall 

denote the minor arc by the symbol  €�AB� (Euro sign). 

With this terminology we can describe the shortest curve(s) joining two points  A  and  B 
on the sphere more precisely as follows:  If the points are antipodal, the shortest curve is 
any semicircular arc joining  A  and  B  (such an arc is automatically a great circle), and 
if the points are not antipodal, it is the minor arc on the great circle determined by the 
points  A  and  B.   Actually proving these statements turns out to be a nonelementary 
exercise, and we shall not discuss the details here.   

Latitude, longitude and spherical coordinates.    The standard method for locating 
points on the surface of the earth is by means of latitude and longitude coordinates. 

In fact, these are equivalent to the spherical coordinates that are used in multivariable 

calculus.  Specifically, we specialize spherical coordinates to the sphere of radius  a ,  
the conversion from rectangular to spherical coordinates is given by  

(x, y, z)    ��   ��  a cos θθθθ sin φφφφ,  a sin θθθθ sin φφφφ,  a cos φφφφ        � 
Then  θθθθ     corresponds to the longitude counterclockwise from the meridian semicircle 

through  (0, 0, 1),  (0, 1, 0)  and  (0, 0, � 1),  and  φφφφ  corresponds to rescaled latitude,

where  0  degrees represents the north pole and  180  degrees represents the south 
pole.  
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Lunes 

Straight lines provide the basic pieces with which constructs familiar plane figures, and 
similarly great circle arcs provide the basic pieces for constructing spherical figures.  
Some of these are analogous to figures in the plane, but we shall start with one class of 
figures that is different.    

In the plane, there are no interesting polygons with only two sides. This is not true on the 
sphere.  A pair of great circles meets in two antipodal points, and these curves divide the 
sphere into four regions, each of which has two edges which are semicircles of great 

circles. The two semicircles bounding such a region form a  lune  (pronounced “loon”), 

or a  biangle ; the first name reflects the fact that the regions bounded by lunes 
correspond to the phases of the moon that are visible from the earth at any given time. 

Lunes are fairly simple objects, but they have a few properties that we shall note: 

1. The vertices of a lune are antipodal points.

2. The two vertex angles of a lune have equal measures.

3. The areas of the smaller and larger regions bounded by a lune are
determined by the measures of these vertex angles.

For the sake of completeness, we should note that the angles are measured using the 
tangent rays to the semicircles at the two vertex points where the latter meet. 
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Spherical triangles 

Spherical triangles are is defined just like planar triangles; they consists of three points 
which do not lie on a great circle and are called  vertices,  and three arcs of great circles 
that join the vertices, which are called the  sides.  An illustration is given below. 

To simplify matters, we shall concentrate on  small triangles,  in which the sides are 
minor great circle arcs.   Most if not all results actually hold for “large” triangles; the 
derivations are not particularly difficult, but here we are interested in describing the main 
points of spherical geometry rather than stating and proving the best possible results.  

Just as there are six basic measurements associated to a plane triangle, there are also 
six basic measurements associated to a spherical triangle.  In the picture below, they 
correspond to the  degree measures of the minor great circle arcs  joining  A  to  B,  
B  to  C,  and  A  to  C  (analogous to the lengths of the sides), and the measures of the 
vertex angles at  A,  B  and  C.   These vertex angles are measured exactly like the 
vertex angles for lunes.   For example, the vertex angle at  A  is measured by 
considering the lune formed by the two great semicircles which have  A  as one endpoint 
and pass through the points  B  and  C.  Of course, similar considerations apply to the 
other two vertex angles. 
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The basic geometry and trigonometry of spherical triangles has been worked out fairly 
completely, and in many respects it resembles the theory of ordinary plane triangles.  In 
particular, one has analogs for the following theorems in plane geometry and 
trigonometry: 

1. The Pythagorean Theorem (but the spherical formula is different �) .

2. The  S.A.S.,  A.S.A.,  A.A.S.,  and  S.S.S.  congruence theorems for
triangles.

3. The Law of Sines and the Law of Cosines.

4. Standard inequalities involving measurements of triangle parts (e.g. , the
longer side is opposite the larger angle, the strict Triangle Inequality).

One major difference between plane and spherical triangles is 

that we have an A.A.A. congruence theorem for the latter. 

Theorem 2.  (A.A.A. Congruence Theorem)  Suppose that we are given two (small) 

spherical triangles on the same sphere   �      with vertices  A,  B,  C  and  D,  E,  F.  If the 

measures of the vertex angles at  A,  B,  C  are equal to the measures of the vertex 

angles at   D,  E,  F  respectively, then the lengths of the arcs  €�AB�,   €�BC�,  and 

€�AC�  are equal to the lengths of the arcs  €�DE�,   €�EF�,  and  €�DF� 
respectively.���� 

It is natural to ask why there is such a result for spherical triangles when the analog for 
plane triangles is completely false, and there is a fairly simple conceptual answer to this 
question which involves an important relationship between the surface area of the 
spherical region bounded by a spherical triangle and the sum of the measures of its 
vertex angles. 

Many classic solid geometry textbooks from the first half of the 20th century contain 
proofs of these results. ���� 

Angle sums and surface area in spherical geometry 

It is intuitively clear that a small spherical triangle with vertices  A,  B,  and C bounds a 
closed region in the sphere which is analogous to the closed interior of a plane triangle; 
in particular, this can be seen from the two previous drawings of spherical triangles.  
Specifically, the closed “interior” region on the sphere determined by the spherical 
triangle is the union of the spherical triangle with the spherical region defined by the 
intersection of the following sets: 

1. The sphere itself.

2. The set of all point in space on the same side of the plane  OAB  as  C.

3. The set of all point in space on the same side of the plane  OAC  as  B.

4. The set of all point in space on the same side of the plane  OBC  as  A.

Problem:  What is the surface area of this closed region? 
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The answer is given by the following result due to A. Girard (1595 – 1632). 

Theorem 3.   Let  A,  B,  C  be the vertices of a spherical triangle as above, and assume 

that the sphere containing them has radius  k.  Let  α, α, α, α,     β, β, β, β,     γγγγ  be the measures of the 
vertex angles of the spherical triangle above at  A,  B  and  C,  all expressed in radians. 

Then the angle sum  αααα    � β β β β    �    γγγγ   is greater than  ππππ,,,,  and the area of the closed region 

bounded by the spherical triangle with these vertices is equal to  k
2

    ((((αααα    � β β β β    �    γ γ γ γ     �    ππππ    ))))    .    

Notation.  The difference  αααα    � β β β β    �    γ  γ  γ  γ  �    ππππ  is called the  spherical excess  of the

spherical triangle. 

Here is an  example  to illustrate the conclusions:  Consider the spherical triangle below, 
which has one vertex at the North Pole and two on the Equator.  The measures of the 

angles at the equatorial vertices are both  90  degrees, and clearly we can take the 

measure  E  of the angle at the polar vertex to be anything between  90°°°°  and  180°°°°.   

The spherical excess of such a triangle (measured in degrees) is then equal to  E,  and 

the area of the spherical triangle is equal to  k
2

    ππππ E�180.

Incidentally, Heron’s Formula for the area of a plane triangle in terms of the lengths of 

the sides has an analog for spherical triangles which is due to S. L’Huillier (1750 �
1840): 

In this formula  E  denotes the spherical excess of the triangle, while a,  b,  c  represent 

the lengths of the sides opposite vertices  A,  B,  C  and  s  �  ½ (a � b � c).

Sketch of a proof for Girard’s Theorem.     Consider the special case in which the 
spherical triangle lies on a closed hemisphere (for example, all points on the equator or 
the northern hemisphere); as in previous discussions, it is possible to retrieve the 
general case from such special cases.  If the spherical triangle does lie on a closed 
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hemisphere, then the great circles containing the arcs  €�AB�,  €�BC�,  €�AC� split the 

sphere into eight closed regions as illustrated below: 

We know the areas of all the lunes determined by the spherical triangle, and these areas 
also turn out to be equal to the sums of the areas of the pieces into which these lunes 
are cut by the various great circles.  Algebraic manipulation of these identities yields the 
area formula stated in the theorem.  Further details are given on pages 4 – 5 of the 
following online site: 

https://www.math.purdue.edu/~arapura/460/spherical.pdf 

Girard’s Theorem foreshadowed one of the most important results in non – Euclidean 
geometry that will be discussed in Section 4 of these notes.���� 
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2 : Attempts to prove Euclid’s Fifth Postulate 

We have already noted that questions about Euclid’s Fifth Postulate are almost certainly 
at least as old as the Elements itself.   Apparently the first known attempt to prove this 

assumption from the others was due to Posidonius (135 � 51 B. C. E.), and the question

was discussed at some length in the writings of Proclus from the 5th century.  A thorough 
description of all known attempts to answer this question is beyond the scope of these 

notes, but we shall note that the writings of Omar Khayyam (Ghiy�s od – D�n Abul – 

Fatah Om�r ibn Ibr�h�m Khayy�m Nish�b�r�, 1048 � 1122) and Nasireddin�Na��r al –

D�n al – ��s� (Mu�ammad ibn Mu�ammad ibn al – �asan al – ��s�, 1201 � 1274)

anticipated some important aspects of the subject, and later work of J. Wallis (1616 �
1703) was also significant in several respects.  None of these scholars succeeded in 
proving the Fifth Postulate, but in many cases they showed that it is logically equivalent 
to certain other statements that often seem extremely reasonable.  For example, in the 
work of Proclus, the Fifth Postulate is shown to be equivalent to an assumption that the 
distance between two given parallel lines is bounded from above by some 
constant, and Wallis showed that the Fifth Postulate is true if one can construct 
triangles that are similar but not congruent to a given one.  

New viewpoints and increasing sophistication 

By the end of the 16th century, mathematics had begun to evolve well beyond the 

classical work of the Greeks and non � European cultures in the Middle East, India and
China.    This growth accelerated during the 17th century, which is particularly 
noteworthy for the emergence of coordinate geometry and calculus.  Both of these had 
major implications for geometry.  First of all, they answered many difficult problems of 
classical geometry in a fairly direct fashion.  Furthermore, they led to new classes of 
problems that could be studied effectively and powerful new techniques, most notably 
through the use of rectangular coordinate systems.  During the 18th century mathematics 
continued to expand in many different directions.   In particular, mathematicians such as 

L. Euler (1707 – 1783) made many striking discoveries about Euclidean geometry that 
were (apparently) unknown to the Greeks, and in view of the increasing mathematical 
sophistication of the time it is not surprising that increasingly sophisticated efforts to 
prove Euclid’s Fifth Postulate began to appear.  In many cases, the basic idea was to 
assume this assumption is false and to obtain a contradiction; if this could be done, then 
one could conclude that the Fifth Postulate was a logical consequence of the other 
assumptions. 
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What if the Fifth Postulate is false? 

Though this be madness, yet there is method in it. 

Shakespeare, Hamlet , Act 2, Scene 2, line 206 

Sustained and extensive efforts by mathematicians to prove the Fifth Postulate began to 
emerge near the end of the 17th century.  One of the earliest attempts was due to G. 

Saccheri (1667 � 1733).  His work is particularly noteworthy in his approach; namely,

his idea was to show that a contradiction results if one assumes the Fifth Postulate is 
false, and he went quite far in analyzing what would happen if this were the case.   The 
results indicated that there were two distinct options if one did not necessarily assume 
the Fifth Postulate; one of them is Euclidean geometry and the other is a system which 
is like Euclidean geometry in many respects but also has some properties which seem 
bizarre at first glance.  His conclusions were very accurate until the very end, where he 
dismissed the non – Euclidean alternative as “repugnant to the nature of a straight line.” 

Saccheri’s work was not widely known during the 18th century, and A. – M. Legendre 

(1752 � 1833) independently obtained many of his results as well as some others.

A few 18th century mathematicians drew conclusions that anticipated the breakthroughs 

of the next century.  The 1763 dissertation of G. S. Klügel (1739 � 1812) pointed out
mistakes in 28 purported proofs of the Fifth Postulate, and the author expressed doubt 
that any proof at all was possible.   Perhaps the most prescient insights during this 

period were due to J. H. Lambert (1728 � 1777).  He did not claim to prove the Fifth

Postulate, but instead he speculated that the geometry obtained by assuming the 

negation of Fifth Postulate was the geometry of “a sphere of imaginary radius” (i.e., the 
square of the radius is a negative real number).  This probably seemed very strange to 
many of his contemporaries, but the advances of the 19th century show it reflects some 
very important aspects of non – Euclidean geometry. 

Lambert’s insights were taken further by F. K. Schweikart (1780 � 1859) and F. A.

Taurinus (1794 � 1874).  Schweikart developed the alternative explicitly as a subject in

its own right and called it astral geometry, speculating that it might be true in “the 
space of the stars.”  Taurinus proceeded to derive the formulas of the analytic geometry 
for the alternative system.   These formulas are exactly what one obtains by taking the 
standard formulas from spherical geometry and trigonometry by substituting an 
imaginary number for the radius of the sphere; this provided a strong confirmation of 
Lambert’s earlier speculation.  Independently, Gauss had discovered the same 
relationships and become convinced that no mathematical proof of the Fifth Postulate 
from the other assumptions was possible. 

Statements equivalent to the Fifth Postulate 

We have noted that much of the work on the Fifth Postulate can be viewed as showing 
that various statements are logically equivalent to that postulate.  Here is a long but not 
exhaustive list of theorems in Euclidean geometry that are logically equivalent to the 
Fifth Postulate. 
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1. If two lines are parallel to a third line, then they are parallel to each other.

2. The angle sum of a triangle is  180  degrees.

3. The angle sum of at least one triangle is  180  degrees.

4. There exists at least one rectangle.

5. There exist two parallel lines that are everywhere equidistant.

6. The distance between two parallel lines is bounded from below by a positive
constant.

7. The distance between two parallel lines is bounded from above by a positive
constant.

8. If a line meets one of two parallel lines, it meets the other.

9. There exist two similar but noncongruent triangles.

10. The opposite sides of a parallelogram have equal length.

11. Every line containing a point in the interior of an angle must meet at least one
ray of the angle.

12. Through a given point in the interior of an angle there is a line that meets
both rays of the angle.

13. Given any area function for the closed interiors of triangles, there exist
triangles with arbitrarily large areas.

14. If two parallels are cut by a transversal, the alternate interior angles have
equal measures.

15. The line joining the midpoints of two sides of a triangle is parallel to the third
side and equal to half its length.

16. Given three noncollinear points, there is a circle containing all three of them.

17. The ratio of the circumference of a circle to its diameter is constant.

18. An angle inscribed in a semicircle is a right angle.

19. The Pythagorean Theorem.

20. Given two positive real numbers  a  and  b,  there is a rectangle whose sides

have lengths equal to  a  and  b.

21. Through a point not on a given line there passes not more than one parallel
to the line.

22. Parallel lines are everywhere equidistant from one another.

23. There exists a convex quadrilateral whose angle sum is  360  degrees.

24. Any two parallel lines have a common perpendicular.

In the next two sections of these notes we shall investigate some of these equivalences. 

We shall conclude this section with a summary of the results from Euclidean geometry 
whose proofs do not require the Fifth Postulate. 

How much can one prove without the Fifth Postulate? 

Clearly the first step in studying the role of the Fifth Postulate is to understand which 
results in Euclidean geometry do not depend logically upon that statement.  There are 
numerous examples of proofs in classical Euclidean geometry which do not depend 
upon the Fifth Postulate or an equivalent statement, but there are also other cases 
where frequently given proofs depend upon these assumptions but it is also possible to 
give proofs which do not.  Therefore we list here some geometric results which hold 
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regardless of whether or not the Fifth Postulate is true but might seem to require this 
assumption; proofs these results for neutral geometry can be found in previous lectures 
or exercises from this course.   In each of these results, we assume that everything lies 

in some neutral planne  ��������or a neutral 3 – space���� 

Pasch’s Theorem.  Suppose we are given  ����ABC  and a line  L  in the same plane as 
the triangle such that  L  meets the open side  (AB)  in exactly one point.  Then either  L 
passes through C  or else  L  has a point in common with  (AC)  or  (BC).  

Crossbar Theorem.   Let  A, B, C  be noncollinear points,  and let  D  be a point in the 

interior of  ∠∠∠∠CAB.  Then the segment  (BC)  and the open ray  (AD  have a point in 
common. 

Trichotomy Principle.   Let  A  and  B  be distinct points, and let  C  and  D  be two 

points on the same side of  AB .   Then exactly one of the following is true: 

(1) D  lies on  (BC (equivalently, the open rays  (BC  and  (BD  are equal). 

(2) D  lies in   Int ∠∠∠∠ABC. 

(3) C  lies in   Int ∠∠∠∠ABD. 

Isosceles Triangle Theorem.   In  ����ABC, one has  �AB�  �  �AC�  if and only if 

�∠∠∠∠ABC�  �  �∠∠∠∠ACB� .

Equilateral Triangle Theorem.   In ����ABC,  one has  �AB�  �  �AC�  �  �BC�  (the 

triangle is equilateral) if and only if one has  �∠∠∠∠ABC �  �  �∠∠∠∠ACB�  �  �∠∠∠∠BAC�  (the 

triangle is equiangular) . 

Existence of Perpendculars  I.    Let  L  be a line, let  A  be a point of  L,  and let  �������� 

be a plane containing  L.  Then there is a unique line M  in �������� such that  A ∈∈∈∈     M  and 

L  ⊥⊥⊥⊥  M. 

Existence of Perpendculars  I I.    Let  L  be a line, and let  A  be a point not on L. 

Then there is a unique line M  such that   A  ∈∈∈∈     M  and L ⊥⊥⊥⊥ M.

Parallels and Perpendiculars.     Suppose that  L,  M  and  N  are three lines in the 

plane  ����  such that we have L ⊥⊥⊥⊥ M and  M ⊥⊥⊥⊥ N.  Then we also have  L || N. 

Perpendicular Bisector Theorem.   Let  A  and  B  be distinct points, let  ����  be a plane 

containing them, suppose that  D  is the midpoint of  [AB],   and let M  be the unique 

perpendicular to   AB  at  D  in the plane  ����.  Then a point  X ∈∈∈∈     ����  lies on M  if and 

only if �XA�  �  �XB�. 

Exterior Angle Theorem.    Suppose we are given triangle ����ABC, and let D  be a 

point such that  B∗C∗D.  Then  �∠∠∠∠ACD�  is greater than both  �∠∠∠∠ABC� and  �∠∠∠∠BAC� . 
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Corollary 1.    If ����ABC  is an arbitrary triangle, then the sum of any two of the angle 

measures �∠∠∠∠ABC�,  �∠∠∠∠BCA�  and  �∠∠∠∠CAB�  is less than  180°°°°.   Furthermore, at 

least two of these angle measures must be less than  90°°°°. 

Corollary 2.    Suppose we are given triangle  ����ABC,  and assume that the two angle 

measures  �∠∠∠∠BCA�  and  �∠∠∠∠CAB� are less than   90°°°°.  Let  D  ∈∈∈∈  AC  be such that 

BD  is perpendicular to  AC.  Then  D  lies on the open segment  (AC).   

Corollary 3.    Suppose we are given triangle  ����ABC.  Then at least one of the 
following three statements is true: 

(1) The perpendicular from  A  to  BC  meets the latter in  (BC). 

(2) The perpendicular from  B  to  CA  meets the latter in  (CA). 

(3) The perpendicular from  C  to  AB  meets the latter in  (AB). 

Classical Triangle Inequality.    In  ����ABC  we have �AC� <  �AB� � �BC� . 

Half of the Alternate Interior Angle Theorem.    Suppose we are given two lines  L  
and  M together with a transversal  N  meeting the lines in different points.  If the 
measures of one pair of alternate interior angles are equal, then the lines  L  and  M  are 

parallel.  

Half of the Corresponding Angle Theorem.    Suppose we are given the setting and 
notation above.  If the measures of one pair of corresponding angles are equal, then the 

lines  L  and  M  are parallel. 

A.A.S. Triangle Congruence Theorem.    Suppose we have two ordered triples of 

noncollinear points  (A, B, C)  and  (D, E, F)  satisfying the conditions  �BC�  �  �EF� ,

�∠∠∠∠ABC�  �  �∠∠∠∠DEF� , and  �∠∠∠∠CAB�  �  �∠∠∠∠FDE� .  Then we have ����ABC  ≅≅≅≅ 
����DEF.

Theorem on Diagonals of a Convex Quadrilateral.    Suppose that  A,  B,  C  and  D 
form the vertices of a convex quadrilateral.  Then the open diagonal segments  (AC)  

and  (BD)  have a point in common. 

H.S. Right Triangle Congruence Theorem    Suppose we have two ordered triples of 

noncollinear points   (A, B, C)   and   (D, E, F)  satisfying the conditions  �∠∠∠∠ABC�  �

�∠∠∠∠DEF�   �  90°°°°,  �AC�  �  �DF� ,  and  �BC�  �  �EF�.  Then ����ABC   ≅≅≅≅  ����DEF.
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Empirical questions 

There are some immediate questions whether Playfair’s Postulate actually “reflects 
physical reality.”  The key issues are summarized in a passage on page 123 in the book, 
Mathematics: The Science of Patterns, by K. Devlin (Owl Books, 1996): 

Suppose you drew a line on a sheet of paper and marked a point not on the line.  
You are now faced with the task of showing that there is one and only one 
parallel to the given line that passes through the chosen point.  But there are 
obvious difficulties here.  For one, no matter how fine the point of your pencil, the 
lines you draw still have a definite thickness, and how do you know where the 
[supposedly] actual lines are?  Second, in order to check that your second line is 
in fact parallel to the first, you would have to extend both lines indefinitely, which 
is [physically] not possible.  Certainly, you can draw many lines through the given 
point that do not meet the given line on the paper.   

In some sense, the difference between Euclid’s Fifth Postulate and Playfair’s Postulate 
is that the former assumes gives a condition that two lines will eventually meet at some 
possibly remote location, but the latter assumes there are lines that will never meet.  If 
one prefers to avoid questions whether two lines might meet at locations that are 
physically inaccessible, then the option of assuming an equivalent statement about a 
bounded portion of space may seem promising.   The discussion in Devlin’s book also 
addresses this. 

Thus, Playfair’s Postulate is not really suitable for experimental verification.  How 
about the triangle postulate [namely, the angle sum of some triangle is 180 
degrees]?  Certainly, verifying this postulate does not require extending the lines 
indefinitely; it can all be done “on the paper.”  Admittedly, it is likely that no one 
has any strong intuition concerning the angle sum of a triangle being 180 
degrees, the way we do about the existence of unique parallels, but since the two 
statements are entirely equivalent, the absence of any supporting intuition does 
not affect the validity of the triangle approach. 

If we want to test the statement about angle sums experimentally, we run into immediate 
problems.  First of all, the unavoidability of experimental errors means it is effectively 

impossible to draw any firm conclusions that the angle sum is  exactly  180  degrees.  In 
contrast, it is conceivable that experimental measurements could show that the angle 

sum is  NOT  equal to  180  degrees, with the deviation exceeding any possible 
experimental error.   There are frequently repeated assertions that Gauss actually tried 
to carry out such an experiment but his results were inconclusive because the value of  

180  degrees was within the expected margin of error.   However, there is no hard 
evidence to confirm such stories.  
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3 : Neutral geometry 

In this section we shall investigate some of the logical equivalences in the list from the 
previous section.  These will play an important role in Section 4. 

We have noted that a great deal of work was done in the 17th and 18th century to study 
classical geometry without using Euclid’s Fifth Postulate; early in the 19th century this 
subject was called absolute geometry, but in modern texts it is generally known as 
neutral geometry.  In this section we shall develop some aspects of this subject more 
explicitly than in the preceding section.   We begin by recalling the formal definition of  a 
neutral geometry. 

Definition.   A neutral plane is given by data  �����, �, d, αααα    �  which satisfy all the axioms

in Moise except (possibly) Playfair’s Postulate or an equivalent statement such as 
Euclid’s Fifth Postulate.  Usually we simply denote a neutral plane by its underlying set 

of points  ����� 

In this setting, the efforts to prove the Fifth Postulate can be restated as follows: 

INDEPENDENCE PROBLEM FOR THE FIFTH POSTULATE.   If  �����is a neutral plane, 

is Playfair  ’s Postulate true in  ����?

It is important to note that all proofs for neutral planes must be done synthetically 
(without coordinates) because Playfair’s Postulate is essentially built into the coordinate 
approach to Euclidean geometry. 

The Saccheri – Legendre Theorem 

One of the cornerstones of neutral and non – Euclidean geometry is the study of the 
following issue: 

ANGLE SUMS OF TRIANGLES.  Given a triangle ����ABC, what can we say about the 

angle sum  �∠∠∠∠ABC� � �∠∠∠∠BCA� � �∠∠∠∠CAB�  and what geometric information does it 

carry? 

We know that the angle sum in Euclidean geometry is always 180°°°°,  and as noted in the

preceding section this fact is logically equivalent to the Fifth Postulate.   On the other 
hand, we have also seen that the angle sum in spherical geometry is always greater 
than and that the difference between these quantities is proportional to the area of a 
spherical triangle.  In any case, the angle sum of a triangle was a central object of study 
in 17th and 18th century efforts to prove the Fifth Postulate. 

Most of the arguments below are similar to proofs in high school geometry, with extra 
attention to questions about order and separation.  However, at several points we need 
the following properties of real numbers. 


