EXERCISES FOR WEEK 8

For these exercises assume that all points lie in a plane which satisfies the axioms for neutral geometry.

1. Prove the following consequence of the Archimedean Law that was stated in the notes: If h and k are positive real numbers, then there is a positive integer n such that $h / 2^{n}<k$. [Hint: Why is there a positive integer n such that $1 / n<k / h$? Use this and the inequality $n<2^{n}$.]
2. Suppose that p and q are arbitrary positive real numbers. Prove that there is a Saccheri quadrilateral $\diamond A B C D$ with base $A B$ such that $|A D|=|B C|=p$ and $|A B|=q$.

Standing hypotheses: In Exercises 2-5 below, points A, B, C, D in a neutral plane form the vertices of a Saccheri quadrilateral such that $A B$ is perpendicular to $A D$ and $B C$, and $|A D|=|B C|$. The segment $[A B]$ is called the base, the segment $[C D]$ is called the summit, and $[A D]$ and $[B C]$ are called the lateral sides. The vertex angles at C and D are called the summit angles.

3. Prove that the summit angles at C and D have equal measures. [Hint: Why do the diagonals have equal length? Use this fact to show that $\triangle B D C \cong \triangle A C D$.]
4. Let X and Y be the midpoints of $[A B]$ and $[C D]$ respectively. Prove that the line $X Y$ is perpendicular to both $[A B]$ and $[C D]$. [Hint: Why does it suffice to prove that Y is equidistant from A and B and X is equidistant from C and D ?]
5. In the given setting, prove that if we $|A B|=|C D|$ then the Saccheri quadrilateral $\diamond D A B C$ is a rectangle.
6. Suppose we are given Saccheri quadrilaterals $\diamond D A B C$ and $\diamond H E F G$ with right angles at A, B and E, F such that the lengths of the bases and lateral sides in $\diamond D A B C$ and $\diamond H E F G$ are equal. Prove that the lengths of the summits and the measures of the summit angles in $\diamond D A B C$ and $\diamond H E F G$ are equal.
7. Suppose are given Lambert quadrilaterals $\diamond A B C D$ and $\diamond E F G H$ with right angles at A, B, C and E, F, G such that $|A B|=|E F|$ or $|B C|=|F G|$. Prove that $|C D|=|G H|,|A D|=|E H|$, and $|\angle C D A|=|\angle G H E|$.
8. Suppose that the points A, B, C, D form the vertices of a Lambert quadrilateral with right angles at A, B, C. Prove that $|A D| \leq|B C|$ and $|A B| \leq|C D|$. [Hint: Start by explaining why it suffices to prove the first of these. Show that there is a Saccheri quadrilateral $\forall D A E F$ such that B and C are the midpoints of the base $[A E]$ and the summit $[F D]$ respectively. Apply Exercise 4.]
9. In the setting of the preceding exercise, prove that if we have $|A B|=|C D|$ or $|A D|=|B C|$, then the Lambert quadrilateral $\diamond A B C D$ is a rectangle.
10. Let p and q be arbitrary positive real numbers. Prove that there is a Lambert quadrilateral $\diamond A B C D$ with right angles at A, B and C such that $|A D|=p$ and $|A B|=q$. [Hint: One can view a Lambert quadrilateral as half of a Saccheri quadrilateral.]

