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and  n �.    In the drawing below,  m  =  3  and  n  =  2.

3. Combining the previous two steps with the Archimedean Property of real
numbers to show that if a rectangle exists, then there is a rectangle whose sides

have dimensions  u   and   v,  where  u  >  p  and  v  >  q.

4. A trimming – down construction, which shows that if there is a rectangle whose

sides have dimensions  x  and  �  and  y  is a positive number less than  x, then

there is a rectangle whose sides have dimensions  y  and  �.  Two applications

of this combine with the third step to prove Theorem  8.
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The proofs for several of these steps are quite lengthy in their own right.  Therefore we 
shall now move forward, with the details in an Appendix to this section.���� 

The All – or – Nothing Theorem for angle sums 

The preceding result on rectangles has an immediate consequence for angle sums of 
triangles. 

Theorem 9.   If a rectangle exists in a neutral plane  ����� then every right triangle in  ���� 

has an angle sum equal to 180°°°°. 

Proof.   Suppose we are given right triangle  ����ABC   with a right angle at  B.  By the 

preceding result there is a rectangle  �WXYZ  such that  �AB�  �  �WX�  and

�BC�  �  �XY�.  By  S.A.S.  we have  ����ABC   ≅≅≅≅   ����WXY;  in particular, the angle

sums of these triangles are equal.  On the other hand, the proof of Theorem  7  implies 
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