and $\boldsymbol{n z}$. In the drawing below, $\boldsymbol{m}=\mathbf{3}$ and $\boldsymbol{n}=\mathbf{2}$.

3. Combining the previous two steps with the Archimedean Property of real numbers to show that if a rectangle exists, then there is a rectangle whose sides have dimensions \boldsymbol{u} and \boldsymbol{v}, where $\boldsymbol{u}>\boldsymbol{p}$ and $\boldsymbol{v}>\boldsymbol{q}$.

4. A trimming - down construction, which shows that if there is a rectangle whose sides have dimensions \boldsymbol{x} and \boldsymbol{z} and \boldsymbol{y} is a positive number less than \boldsymbol{x}, then there is a rectangle whose sides have dimensions \boldsymbol{y} and \boldsymbol{z}. Two applications of this combine with the third step to prove Theorem $\mathbf{8}$.

The proofs for several of these steps are quite lengthy in their own right. Therefore we shall now move forward, with the details in an Appendix to this section.

> The All - or - Nothing Theorem for angle sums
> The preceding result on rectangles has an immediate consequence for angle sums of begins here. triangles.

Theorem 9. If a rectangle exists in a neutral plane \mathbb{P}, then every right triangle in \mathbb{P} has an angle sum equal to $\mathbf{1 8 0}^{\circ}$.

Proof. Suppose we are given right triangle $\triangle \mathrm{ABC}$ with a right angle at B . By the preceding result there is a rectangle $\square \mathbf{W X Y Z}$ such that $|\mathbf{A B}|=|\mathbf{W X}|$ and $|B C|=|X Y|$. By S.A.S. we have $\triangle A B C \cong \triangle W X Y$; in particular, the angle sums of these triangles are equal. On the other hand, the proof of Theorem 7 implies

