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that the angle sum of  ����WXY  is equal to  180°°°°, so the same must be true for

����ABC.����

This result extends directly to arbitrary triangles in the neutral plane ������

Theorem 10.   If a rectangle exists in a neutral plane  ����� then every triangle in  ����  has 

an angle sum equal to  180°°°°.

Proof.   The idea is simple; we split the given triangle into two right triangles and apply 

the preceding result.  By a corollary to the Exterior Angle Theorem, we know that the 
perpendicular from one vertex of a triangle meets the opposite side in a point between 
the other two vertices (in particular, we can take the vertex opposite the longest side).  

Suppose now that the triangle is labeled  ����ABC  so that the foot  D  of the 
perpendicular from  A  to  BC  lies on the open segment  (BC). 

We know that  D  lies in the interior of  ∠∠∠∠BAC, and therefore we have 

�∠∠∠∠BAD�  �  �∠∠∠∠DAC�   �   �∠∠∠∠BAC�.

By the previous result on angle sums for right triangles, we also have 

�∠∠∠∠BAD�  �  �∠∠∠∠ADB�   �    90°°°°    �    �∠∠∠∠DAC�  �  �∠∠∠∠ACD�

and if we combine all these equations we find that  

�∠∠∠∠ABC�  �  �∠∠∠∠BCA�  �  �∠∠∠∠CAB�   �    180°°°°

which is the desired conclusion.���� 

There is also a converse to the preceding two results. 

Theorem 11.   If a neutral plane   ����  contains at least one triangle whose angle sum is 

equal to 180°°°°, then  ����  contains a rectangle. 

Proof.   The idea is to reverse the preceding discussion; we first show that under the 

given conditions there must be a right triangle whose angle sum is equal to  180°°°°, and

then we use this to show that there is a rectangle. 

FIRST STEP:  If there is a triangle whose angle sum is  180°°°°, then there is also a

right triangle with this property. 

Given a triangle whose angle sum is  180°°°°, as in the previous result we label the

vertices  A,  B,  C  so that the foot of the perpendicular from  A  to  BC  lies on the open 

segment  (BC).  Reasoning once again as in the proof of Theorem  10  we find 

Angle sum (����ABD)   �  Angle sum (����ADC)    � 

Angle sum (����ABC)   �  180°°°°    ��   180°°°°  �  180°°°°    ��   360°°°°. 
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Since each of the summands on the left hand side is at most  180°°°°, it follows that each

must be equal to  180°°°°,  (if either were strictly less, then the left side would be less than

360°°°°).  Thus the two right triangles  ����ABD  and  ����ADC  have angle sums equal to

180°°°°.

SECOND STEP:  If there is a right triangle whose angle sum is  180°°°°, then there is

also a rectangle. 

Once again the idea is simple.  We shall construct another right triangle with the same 

hypotenuse to obtain a rectangle.  Suppose that  ����ABC  is the right triangle whose 

angle sum is equal to  180°°°°,  and that the right angle of this triangle is at  B.

By the Protractor Postulate there is a unique ray  [CE  such that  (CE is on the side of  

AC  opposite  B  and  �∠∠∠∠ECA�  �  �∠∠∠∠BAC�.  Take  D  to be the unique point on  (CE

such that  �AB�  �  �CD�.  Then Theorem 7 and   S.A.S.  imply that  ����BAC   ≅≅≅≅
����DCA.   In particular, we have  �∠∠∠∠DAC�  �  �∠∠∠∠BCA�  and  �∠∠∠∠ADC�  �  �∠∠∠∠ABC�.

It follows that  AD  and  DC  are perpendicular, so we know there are right angles at  B 
and  D.  Furthermore, the Alternate Interior Angle Theorem (more correctly, the half 
which is valid in neutral geometry) implies that the lines  AB  and  CD  are parallel, and 
likewise the same result and the triangle congruence imply that  AD  and  BC  are 
parallel.  As in the discussion of Lambert quadrilaterals, these conditions imply that  A,  
B,  C,  D  form the vertices of a convex quadrilateral.  We shall use this to prove that 
there are also right angles at  A  and  C. 

Since we now know we have a convex quadrilateral, it follows that  A  and  C  lie in the 

interiors of  ∠∠∠∠BCD  and  ∠∠∠∠DAB  respectively.  Therefore we have 

�∠∠∠∠BCD�   �   �∠∠∠∠ACD�  �  �∠∠∠∠ACB�   �   �∠∠∠∠BAC�  �  �∠∠∠∠ACB�   �   90°°°°

where the last equation holds because of our assumption about the angle sum of the 

right triangle  ����ABC.  Thus we know that there also is a right angle at the vertex  C.  
But we also have  

�∠∠∠∠BAD�   �   �∠∠∠∠BAC�  �  �∠∠∠∠BCA�   �   �∠∠∠∠ACD�  �  �∠∠∠∠BCA�   �   90°°°°

where the final equation this time follows because we have shown there is a right angle 
at  C.   Thus we see that there is also a right angle at  A  and therefore we have a 
rectangle.���� 

This brings us to the main result of this section. 
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Theorem 12. (All – or – Nothing Theorem)   In a given neutral plane ��������,  EITHER

every triangle has an angle sum is equal to  180°°°°  OR ELSE   no triangle  has an angle

sum equal to  180°°°°.  In the second case the angle sum of every triangle is strictly less

than  180°°°°.  

Proof.   This is mainly a matter of sorting through the preceding results.  If one triangle 

has an angle sum equal to  180°°°°, then by Theorem  11  a rectangle exists, and in that

case Theorem  10  implies that every triangle has angle sum equal to  180°°°°.  Therefore 
it is impossible to have a neutral plane in which some triangles have angle sums equal 

to  180°°°°  but others do not.  Finally, by the Saccheri – Legendre Theorem we know that

if no triangle has angle sum equal to  180°°°°  then every triangle must have an angle sum

that is strictly less than  180°°°°.����

The path to hyperbolic geometry 

The sum of the three angles of a plane triangle cannot be greater than 

180° … But the situation is quite different in the second part — that the 

sum of the angles cannot be less than 180°; this is the critical point, the 
reef on which all the wrecks occur. 

C. F. Gauss,  Letter to F. (W.) Bolyai 

When you have eliminated the impossible, whatever remains, however 
improbable [it may seem], must be the truth. 

A. C. Doyle (1859 � 1930),  Sherlock Holmes � Sign of the Four 

In some respects, the results of this section provide reasons to be optimistic about 
finding a proof of Euclid’s Fifth Postulate in an arbitrary neutral plane.   First of all, the 
results on rectangles and angle sums show that Playfair’s Postulate is equivalent to 
statements that look much weaker (for example, the existence of  just one rectangle  or 

just one triangle  whose angle sum is 180°°°°).   Furthermore, the results suggest that

the negation of Playfair’s Postulate leads to consequences which seem extremely 
strange and perhaps even unimaginable.   However, as Gauss indicated in his letter, no 
one was able to overcome the final hurdle and give a complete proof of Euclid’s Fifth 
Postulate from the other axioms for Euclidean geometry.  Although the efforts to prove 
Euclid’s Fifth Postulate did not lead to the proof, the best work on the problem provided 
very extensive, and in some cases nearly complete, information on strange things that 
would happen if one assumes that the Fifth Postulate is false.  We shall examine some 
of these phenomena in the remaining sections of this unit. 

Ultimately these considerations led to a viewpoint expressed in another quotation from 
Gauss’ correspondence:   

The theorems of this geometry appear to be paradoxical and, to the uninitiated, 
absurd; but calm, steady reflection reveals that they contain nothing at all 
impossible.  (Letter to Taurinus, 1824; one should compare this to the Sherlock 
Holmes quotation given above.) 
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Before Gauss, some mathematicians (for example, Klügel) had speculated that a proof 
of the Fifth Postulate might be out of reach.  However, Gauss (and to a lesser extent a 
contemporaries like Schweikart and Taurinus) took things an important step further, 
concluding that the negation of the Fifth Postulate yields a geometrical system which is 
very different from Euclidean geometry in some respects but has exactly the same 
degree of logical validity (compare also the passage from the letter to Olbers at the 

beginning of this unit).   Working independently of Gauss, J. Bolyai (1802 � 1860) and

N. I. Lobachevsky (1792 � 1856) reached the same conclusions as Gauss (each one

independently of the other), which Bolyai summarized in a frequently repeated quotation: 

Out of nothing I have created a strange new universe. 

Both Bolyai and Lobachevsky took everything one important step further than Gauss by 
publishing their conclusions, and for this reason they share credit for the first published 
recognition of hyperbolic geometry as a mathematically legitimate subject. 

Appendix to Section 3:  Proof of Theorem 8 

The major steps in the argument will be presented as lemmas. 

Lemma 8A.  (Splicing Property).   Suppose that  �ABCD is a rectangle, and let 

C1 ∈∈∈∈ (DC be a polnt such rhat  �DC1� =  2�DC�.   Let  B1  be the foot of the

perpendicular from C1  to  AB. Then �∠∠∠∠ DC1B�� � 90°°°° and the points A, B1, C1  and  D

(in that order) are the vertices of a rectangle. 

Proof.   First of aIl, the lines AD, BC, and B1C, are all parallel to each other because 

every two of them have a common perpendicular (namely, AB).  Therefore AD and B1C1 

are contained in the D – and C1 – sides of BC respectively.  But   �DC1� =  2�DC� and

C1 ∈∈∈∈ (DC  imply D∗C∗C1 is true. This in turn implies that D and C1 are on opposite sides

of BC.   Since  B  is the common point of the lines AB1 and BC, it follows that  A∗B∗B1 
is true. 

Since AD and B1C1 are parallel (they have a common perpendicular), the points B1 and 

C1 lie on the same side of AD.  Hence A, B1, C1, and D (in that order) form the vertices 

of a convex quadrilateral.  Likewise B, B1, C1, and C form the vertices of a convex 

quadrilateral.  By construction, S.A.S. applies to show ����ADC  ≅≅≅≅   ����BCC1.  It follows

The appendix 

was already 

covered in L15.  

Skip to the end 

of the section.

__________________________________________
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that  �AC� �  � BC1�,  γγγγ  �  � ∠∠∠∠ CBC1�  �� � ∠∠∠∠ DAC�  �� αααα, and  ηηηη  �  �∠∠∠∠ BC1C����
�∠∠∠∠ ACD�	
On the other hand, if  ξξξξ  �  � ∠∠∠∠ C1C B1���then

αααα  �  β β β β    �    90°°°°     �     γγγγ  �  ξξξξ    	
 . 

Therefore αααα  �  γγγγ implies ββββ  �  ξξξξ	

By  A.A.S.  it follows that ����ABC  ≅≅≅≅   ����BB1C1,  and hence αααα  �  δδδδ �   �∠∠∠∠ BC1 B1�	

This implies that  ηηηη  �  δ δ δ δ    �    90°°°°	   But then it follows that �∠∠∠∠ DC1 B1�   �    ηηηη  �  δ δ δ δ 

�    90°°°°	���� 

Lemma 8B.  If there is a rectangle  �ABCD in the neutral piane under consideration, 

then for every positive integer n there is a rectangle  �A′′′′B′′′′C′′′′D′′′′  with  �A′′′′B′′′′� ���C′′′′D′′′′�
��n �AB� ��n �CD���and  �A′′′′D′′′′� ���B′′′′C′′′′� ���AD� ���BC�	

Proof.   The case n � 2 was done in the preceding lemma.  Assume by induction that

we have  B  �  A1, A2, … , An – 1   and  C  �  C1, C2, … , Cn – 1  such that

A �  A0∗A1∗A2∗ … ∗An – 1   and   D �  C0∗C1∗C2∗ … ∗Cn – 1

(the notation means that Xp∗Xq∗Xr  if  p  <  q  <  r ) and the following additional 
conditions: 

For k ��1, … , n – 1 we have �AB� ���CD� � �Ak – 1Ak� ���Ck – 1Ck�	�

For k ��1, … , n – 1 the line CkAk is perpendicular to both AB  and  CD	�

Now apply Lemma 8A to the rectangle An – 2An – 1Cn – 1Cn – 2  to obtain An and Cn such 

that  An – 2∗An – 1∗An and  Cn – 2∗Cn – 1∗Cn 
  �AB� ���CD� � �An – 1An� ���Cn – 1Cn�
�
and CnAn is perpendicular to both AB  and  CD	����

Corollary 8C.  If there is a rectangle  �ABCD in the neutral piane under consideration, 

then for each pair of integers  n, m  > 0  there is a rectangle �A′′′′B′′′′C′′′′D′′′′ with  �A′′′′B′′′′� ��
�C′′′′D′′′′� ��n �AB� ��n �CD���and  �A′′′′D′′′′� ���B′′′′C′′′′� ��m �AD� ��m �BC�	

Proof.   First apply Lemma B to get a rectangle  �A�B�C�D� 
with �A∗

B
∗� ��n �AB� and

�B�C�� ����BC�	��Now apply Lemma B again to get a new rectangle  �A′′′′B′′′′C′′′′D′′′′ with

Skip this 

page.
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�A′′′′B′′′′� ���A�B�� and  �B′′′′C′′′′� ��m �B�C��	� It follows that �A′′′′B′′′′� ���C′′′′D′′′′� ��n �AB�
��n �CD���and  �A′′′′D′′′′� ���B′′′′C′′′′� ��m �AD� ��m �BC�	����

The next lemma allows us to take a large rectangle and trim it to another of srnalfer size. 

Lemma 8D.  Let  �ABCD  be a rectangle, let  X ∈∈∈∈ (CD),  and let Y be the foot of the

perpendicular from X to AB	���Then  A, Y, X, and  D  (in that order) are the vertices of a

rectangle.   

Proof.   The lines AD, XY, and BC are all parallel because they are all perpendicular to 

AB.  Hence AD is contained in the D � side of XY and BC is contained in the C � side 

of  XY.  But C∗X∗D since X lies on (BC), and therefore C and D lie on opposite sides of 
XY.   Hence AD and BC also lie entirely on opposite sides of XY.  Since AB and XY 

meet at Y, it follows that A∗Y∗B must be true. 

Label the angle measures as indicated in the drawing above: 

αααα  �  �∠∠∠∠ YDX� ξξξξ  �  �∠∠∠∠CYX�
ββββ  �  �∠∠∠∠ DYX� ηηηη  �  �∠∠∠∠ XCY�
γγγγ  �  �∠∠∠∠ ADY� ζζζζ  �  �∠∠∠∠ CYB�
δδδδ  �  �∠∠∠∠ AYD� ωωωω  �  �∠∠∠∠ YCB�

Since AD is parallel to XY, CD is parallel to XY, and AB is parallel to CD, it follows that 

A, Y, X, and  D  and  Y, B, X, and  X (in these orders) form tbe vertices of a convex 

quadrilateral. Therefore D lies in the interior of  ∠∠∠∠ AYX,  Y lies in the interior of  ∠∠∠∠ ADYX, 

C lies in the interior of  ∠∠∠∠ XYB,  and  Y lies in the interior of  ∠∠∠∠ XCB.  These imply the 
following four equations:  

αααα � γγγγ  �  90°°°° ξξξξ � ζζζζ  �  90°°°°

ββββ � δδδδ  �  90°°°° ηηηη � ωωωω  �  90°°°°

The Saccheri – Legendre Theorem implies the following additional inequalities: 

ξξξξ � γγγγ  �  90°°°° ωωωω � ζζζζ  �  90°°°°

Skip this 

page.
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Taken together, these imply  90°°°°  �  αααα � β  β  β  β  and  90°°°°  �  ξξξξ � η.  η.  η.  η.  Therefore the

Saccheri – Legendre  Theorem irnplies that both �∠∠∠∠ DXY��and  �∠∠∠∠ CXY� are less than

or equal to  90°°°°.  On the other hand, C∗X∗D implies that �∠∠∠∠ DXY����∠∠∠∠ CXY������

180°°°°.    This can happen only if both  �∠∠∠∠ DXY��and  �∠∠∠∠ CXY� are equal to  90°°°°.  But

this now implies XY is perpendicular to CD, so that A, Y, X, and  D  (in that order) are 

the vertices of a rectangle	����

Proof of Theorem 8.   Given rectangle �ABCD  and real numbers  p , q  >  0,   find 

positive integers  n  and  m  so that  p  < n �AB� and  q  < m �AD�	���Form a rectangle

�A′′′′B′′′′C′′′′D′′′′ with  �A′′′′B′′′′� ��n �AB���and  �A′′′′D′′′′� ��q �AD�	

Let  X ∈∈∈∈ (A′′′′B′′′′) satisfy �A′′′′X�� ���p  ����A′′′′B′′′′�
�and let  Y  be the foot of the

perpendicular from  X  to  C′′′′D′′′′	� Then by Lemma 8D one obtains a rectangle  �A′′′′YXD′′′′

with  �A′′′′X�� ���p  and  �A′′′′D′′′′� ��q �AD�	���

Now let  W ∈∈∈∈ (A′′′′D′′′′)  satisfy  �A′′′′W�� ���q  ����A′′′′D′′′′�
�  and let  V  be the foot of

the perpendicular from Z  to  XY	  Then A′′′′, Y, V, and  W  (in that order) are the vertices

of a rectangle  with  �A′′′′X� ���p  and �A′′′′W�� ���q	����
_______________________________________________________
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 4 : Angle defects and related phenomena 

In the previous section we showed that the angle sums of triangles in a neutral plane 
can behave in one of two very distinct ways.  In fact, it turns out that there are essentially 
only two possible neutral planes, one of which is given by Euclidean geometry and the 
other of which does not satisfy any of the  24  properties listed in Section 2.   The 

purpose of this section is to study some of these properties for a non – Euclidean plane.  

Definition.   A neutral plane  �����, �, d, αααα�  is said to be  hyperbolic  if Playfair’s Parallel

Postulate does  not  hold.  In other words, 

there is some pair  (L, X), where  L  is a line in  ����  and X is a 

point not on  L, for which there are at least two lines through 
X  which are parallel to  L.   

The study of hyperbolic planes is usually called  HYPERBOLIC GEOMETRY. 

The name “hyperbolic geometry” was given to the subject by F. Klein (1849 – 1925), 
and it refers to some relationships between the subject and other branches of geometry 
which cannot be easily summarized here.   Detailed descriptions may be found in the 
references listed below: 

C. F. Adler,  Modern Geometry: An Integrated First Course (2
nd

 Ed.).  McGraw –
Hill, New York, 1967.  ISBN: 0–070–00421–8. [see Section 8.5.3, pp. 219 – 226]  

A. F. Horadam,  Undergraduate Projective Geometry.  Pergamon Press, New 
York, 1970.  ISBN: 0–080–17479–5. [see pp. 271 – 272] 

H. Levy,  Projective and Related Geometries. Macmillan, New York, 1964.  ISBN: 

0–000–03704–4. [see Chapter V, Section 7] 

A complete and rigorous development of hyperbolic geometry is long and 
ultimately highly nonelementary, and  it requires a significant amount of input 
from trigonometry, transcendental functions and differential and integral calculus. 
We shall discuss one aspect of the subject with close ties to calculus at the end of this 
section, but we shall only give proofs that involve “elementary” concepts and 
techniques. 

In the previous section we showed that the angle sum of a triangle in a neutral plane is 

either always equal to  180°  or always strictly less than  180°.  We shall begin by
showing that the second alternative holds in a hyperbolic plane. 

Theorem 1.  In a hyperbolic plane  ����  there is a triangle  ����ABC  such that 

�∠∠∠∠CAB �  �  �∠∠∠∠ABC �  �  � ∠∠∠∠ACB �   <  180°. 

By the results of the preceding section, we immediately have several immediate 
consequences. 

Theorem 2.  In a hyperbolic plane  ����, given an arbitrary triangle ����ABC we have 

�∠∠∠∠CAB �  �  �∠∠∠∠ABC �  �  � ∠∠∠∠ACB �   <  180°.� 
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This follows from the All – or – Nothing Theorem in Section 3, and it has further 

implications for the near – rectangles we have discussed.   

Corollary 3.  In a hyperbolic plane  ����, suppose that we have a convex quadrilateral 

�ABCD such that AB is perpendicular to both AD and BC.

1. If   �ABCD  is a  Saccheri  quadrilateral with base  AB  such that  xx

�AD�  �   �BC�,  then  �∠∠∠∠ADC�   �   �∠∠∠∠BCD�   <   90°.

2. If   �ABCD is a  Lambert quadrilateral  such that  �∠∠∠∠ABC�  �
�∠∠∠∠BCD�   �   �∠∠∠∠DAB�   �   90°,  then  |∠∠∠∠ADC�   <   90°.

In particular, it follows that  there are  NO RECTANGLES  in a  hyperbolic plane  ����. 

Proof of Corollary 3.   If we split each choice of convex quadrilateral into two triangles 
along the diagonal [AC], then by Theorem 2 we have the following: 

�∠∠∠∠CAB�  �   �∠∠∠∠ABC�   �  � ∠∠∠∠ACB�   <   180° 

�∠∠∠∠CAD�  �   �∠∠∠∠ADC�   �  � ∠∠∠∠ACD�   <   180° 

Since is a convex quadrilateral we know that C lies in the interior or  ∠∠∠∠DAB   and  A  lies 

in the interior of  ∠∠∠∠BCD.  Therefore we have  �∠∠∠∠DAB�   �   �∠∠∠∠DAC�  �   �∠∠∠∠CAB� 
and  �∠∠∠∠BCD�   �   �∠∠∠∠ACD�  �   �∠∠∠∠ACB�; if we combine these with the previous

inequalities we obtain the following basic inequality, which is valid for an arbitrary 
convex quadrilateral in a hyperbolic plane: 

�∠∠∠∠ABC�  �   �∠∠∠∠BCD�  �   �∠∠∠∠CDA�  �   �∠∠∠∠DAB�   � 

�∠∠∠∠CAB�  �  �∠∠∠∠ABC�  �  �∠∠∠∠ACB�  �  �∠∠∠∠CAD�  �  �∠∠∠∠ADC�  �  �∠∠∠∠ACD�   <   360° 

To prove the first statement, suppose that  �ABCD  is a  Saccheri quadrilateral, so 

that �∠∠∠∠ADC�   �   �∠∠∠∠BCD �  by the results of the previous section.  Since  |∠∠∠∠DAB� 
� �∠∠∠∠ABC�   �   90°  by Proposition 3.6 , the preceding inequality reduces to  

180°  �   �∠∠∠∠BCD�  �   �∠∠∠∠CDA�   �   180°  �   2 �∠∠∠∠BCD�   ��

180°  �   2 �∠∠∠∠CDA�   <   360° 

which implies  �∠∠∠∠ADC�   �   �∠∠∠∠BCD�   <   90°. 

To prove the second statement, suppose that  �ABCD  is a  Lambert quadrilateral, so 

that  �∠∠∠∠BCD�   �   90°.  Since �∠∠∠∠ABC�  �   �∠∠∠∠DAB�   �   90°, the general

inequality specializes in this case to   270°  �   �∠∠∠∠CDA�   <   360°, which implies the

desired inequality   |∠∠∠∠ADC |  <  90°.� 
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Proof of Theorem 1.   In a hyperbolic plane, we know that there is some line  L  and 
some point  A  not on  L  such that there are at least two parallel lines to  L  which 
contain  A. 

Let  C  be the foot of the unique perpendicular from  A  to  L, and let  M  be the unique 
line through  A  which is perpendicular to  AC in the plane of  L  and  A.  Then we know 
that  L  and  M  have no points in common (otherwise there would be two perpendiculars 
to  AC  through some external point).  By the choice of  A  and  L  we know that there is 
a second line  N  through  A  which is disjoint from  L .   

The line  N  contains points  U  and  V  on each side of  AC, and they must satisfy  

U∗A∗V.  Since  N  is not perpendicular to  AC  and  �∠∠∠∠CAU�  �   �∠∠∠∠CAV�   �   180°, 

it follows that one of  �∠∠∠∠CAU�,  �∠∠∠∠CAV�  must be less than 90°.  Choose  W  to be

either  U  or  V  so that we have  θθθθ   �   �∠∠∠∠CAW�   <   90° (in the drawing above we

have  W  �  V).  

The line L also contains points on both sides of AC, so let X be a point of L which is on 
the same side of AC as W.   

CLAIM:  If  G  is a point of  (CX, then there is a point  H  on  (CX  such that  C∗G∗H

and  �∠∠∠∠CHA�   �   ½ �∠∠∠∠CGA�.   

To prove the claim, let  H  be the point on  (CX  such that  �CH�   ��  �CG�   �

�GA�; it follows that  C∗G∗H  holds and also that   �GH�   ��  �AG� .   The Isosceles

Triangle Theorem then implies that  |∠∠∠∠GHA�  �   �∠∠∠∠GAH |, and by a corollary to the

Saccheri – Legendre Theorem we also have  �∠∠∠∠CGA �  �  �∠∠∠∠GHA�� �  �∠∠∠∠GAH�  � 

2 �∠∠∠∠GHA�  �  2 �∠∠∠∠CHA�,  where the final equation holds because  ∠∠∠∠GHA   �   
∠∠∠∠CHA.   This proves the claim. 

Proceeding inductively, we obtain a sequence of points  B0, B1, B2,  …  of points on

(CH  such that  �∠∠∠∠CBk + 1  A�   �   ½ �∠∠∠∠CBk A�,  and it follows that for each  n  we have

�∠∠∠∠CBn  A�   �   2 

–
 

n
 �∠∠∠∠CB0 A�.
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If we choose  n  large enough, we can make the right hand side (hence the left hand 

side) of this inequality less than  ½ (90° ��θθθθ).   Furthermore, we can also choose  n  so

that  

�∠∠∠∠ CBn  A�   <   θθθθ   �   �∠∠∠∠CAW� 

and it follows that the angle sum for  ����ABn C  will be

�∠∠∠∠CABn�  �   �∠∠∠∠ABn C�  �   �∠∠∠∠ACBn�   <    

½ (180° ��θθθθ)  �  θθθθ   �  180°   <   (90° ��θθθθ)  �  θθθθ   �  90°    ��  180°.

Therefore we have constructed a triangle whose angle sum is less than 180°, as
required.� 

Definition.   Given ����ABC in a hyperbolic plane, its angle defect is given by 

δδδδ(����ABC)   �   180°  �  �∠∠∠∠CAB�  �   �∠∠∠∠ABC�  �  �∠∠∠∠ACB�.

By Theorem 2,  in a hyperbolic plane the angle defect of  ����ABC  is a positive real 

number which is always strictly between  0°  and  180°.�  

The Hyperbolic Angle – Angle – Angle Congruence Theorem 

We have already seen that in spherical geometry there is a complementary notion of 
angle excess, and the area of a spherical triangle is proportional to its angle excess.  
There is a similar phenomenon in hyperbolic geometry:  For any geometrically 
reasonable theory of area in hyperbolic geometry, the angle of a triangle is 
proportional to its angular defect.   This is worked out completely in the book by 
Moïse.  However, for our purposes we only need the following property which suggests 
that the angle defect behaves like an area function.  

Proposition 4.   (Additivity property of angle defects)   Suppose that we are given 

����ABC  and that  D is a point on  (BC) .  Then we have

δδδδ(����ABC)   �   δδδδ(����ABD)  �  δδδδ(����ADC) . 

Proof.    If we add the defects of the triangles we obtain the following equation: 

δδδδ(����ABD)  �  δδδδ(����ADC)   �   180°  �  �∠∠∠∠DAB�  �   �∠∠∠∠ABD�   �  �∠∠∠∠ADB�  � 

180°  �  �∠∠∠∠CAD�  �   �∠∠∠∠ADC�  �  �∠∠∠∠ACD�

By the Supplement Postulate for angle measure we know that  

�∠∠∠∠ADB�  �  �∠∠∠∠ADC �  �   180°

by the Additivity Postulate we know that  
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�∠∠∠∠BAC�  �   �∠∠∠∠BAD�  �  �∠∠∠∠DAC� 

and by the hypotheses we also know that  ∠∠∠∠ABD  �   ∠∠∠∠ABC  and  ∠∠∠∠ACD  �   ∠∠∠∠ACB  . 
If we substitute all these into the right hand side of the equation for the defect sum 

δδδδ(����ABD)  �  δδδδ(����ADC),  we see that this right hand side reduces to

180°  �  �∠∠∠∠CAB�  �   �∠∠∠∠ABC�  �  �∠∠∠∠ACB� 

which is the angle defect for  ����ABC.� 

The next result yields a striking conclusion in hyperbolic geometry, which shows that 
the latter does not have a similarity theory comparable to that of Euclidean 
geometry. 

Theorem 5. (Hyperbolic A.A.A. or Angle – Angle – Angle Congruence Theorem)  
Suppose we have ordered triples  (A, B, C)  and  (D, E, F)  of noncollinear points such 

that the triangles  ����ABC  and  ����DEF  satisfy  �∠∠∠∠CAB�  �  �∠∠∠∠FDE� , �����∠∠∠∠ABC�   �  

�∠∠∠∠DEF�,����and  �∠∠∠∠ACB�   �  �∠∠∠∠DFE�.���� Then we have  ����ABC   ≅≅≅≅   ����DEF. 

Proof.   If at least one of the statements �BC�  �   �EF� ,���� �AB�  �   �DE� ,  or �AC� 

�   �DF�  is true, then by  A.S.A.  we have  ����ABC   ≅≅≅≅   ����DEF.  Therefore it is only

necessary to consider possible situations in which all three of these statements are 
false.  This means that in each expression, one term is less than the other.  There are 
eight possibilities for the directions of the inequalities, and these are summarized in the 
table below. 

CASE |AB| ?? |DE| |AC| ?? |DF| |BC| ?? |EF|
000 �AB�  <  �DE� �AC�  <  �DF� �BC�  <  �EF�

001 �AB�  <  �DE� �AC�  <  �DF� �BC�  >  �EF�

010 �AB�  <  �DE� �AC�  >  �DF� �BC�  <  �EF�

011 �AB�  <  �DE� �AC�  >  �DF�  �BC�  >  �EF�

100 �AB�  >  �DE� �AC�  <  �DF� �BC�  <  �EF�

101 �AB�  >  �DE� �AC�  <  �DF� �BC�  >  �EF�

110 �AB�  >  �DE� �AC�  >  �DF� �BC�  <  �EF�

111 �AB�  >  �DE� �AC�  >  �DF� �BC�  >  �EF�

Reversing the roles of the two triangles if necessary, we may assume that at least two of 

the sides of  ����ABC  are shorter than the corresponding sides of  ����DEF.  Also, if we 

consistently reorder  { A, B, C }  and  { D, E, F }  in a suitable manner, then we may also 

arrange things so that  �AB�  <  �DE�   and  �AC�  <  �DF�.  Therefore, if we take points

G  and  H  on the respective open rays  (BA  and  (BC  such that  �AG�  �  �DE�  and

�AH�  �  �DF� ,  then by  S.A.S.  we have  ����AGH   ≅≅≅≅   ����DEF.

________________________________________

Lecture 

16 ends 

here.

This should be 
�

.



37 

By hypothesis and construction we know that the angular defects of these triangles 

satisfy  δδδδ(����AGH)   �   δδδδ(����DEF)   �   δδδδ(����ABC).  We shall now derive a
contradiction using the additivity property of angle defects obtained previously.  The 
distance inequalities in the preceding paragraph imply the betweenness statements 

A∗B∗G  and  A∗C∗H,  which in turn yield the following defect equations:

δδδδ(����AGH)   �   δδδδ(����AGC)  �  δδδδ(����GCH)

δδδδ(����AGC)   �   δδδδ(����ABC)  �  δδδδ(����BGC)

If we combine these with previous observations and the positivity of the angle defect we 
obtain  

    δδδδ(����ABC)  <   δδδδ(����ABC)  �  δδδδ(����BGC)  �  δδδδ(����GCH)  � 

δδδδ(����AGH)   �   δδδδ(����DEF)

which contradicts the previously established equation  δδδδ(����DEF)  �  δδδδ(����ABC).  The

source of this contradiction is our assumption that the corresponding sides of the two 
triangles do not have equal lengths, and therefore this assumption must be false.  As 

noted at the start of the proof, this implies  ����ABC   ≅≅≅≅   ����DEF.�

One immediate consequence of Theorem  6  is that in hyperbolic geometry, two 
triangles cannot be similar in the usual sense unless they are congruent.  In 
particular, this means that we cannot magnify or shrink a figure in hyperbolic geometry 
without distortions.   This is disappointing in many respects, but if we remember that 
angle defects are supposed to behave like area functions then this is not surprising; we 
expect that two similar but noncongruent figures will have different areas, and in 
hyperbolic (just as in spherical !) geometry this simply cannot happen. 

The Strong Hyperbolic Parallelism Property 

The negation of Playfair’s Postulate is that there is some line and some external point 
for which parallels are not unique.  It is natural to ask if there are neutral geometries in 

which unique parallels exist for  some but  not  all  pairs (L, A) where  L  is a line and 
A  is an external point.   The next result implies that no such neutral geometries exist. 

Theorem 7.  Suppose we have a neutral plane  ����  such that for  some  line  L  and 

some external point   A  there is a unique parallel to  L  through  A�  Then there is a 

rectangle in  ����� 




