SOLUTIONS FOR "MORE WEEK 08 EXERCISES"

11. (a) The midpoint conditions imply the following equations:

$$
\begin{aligned}
|A E|=|E C|=|A C| / 2=\left|A^{\prime} C^{\prime}\right| / 2==\left|E^{\prime} C^{\prime}\right|=\left|A^{\prime} E^{\prime}\right| \\
|A F|=|F C|=|A B| / 2=\left|A^{\prime} B^{\prime}\right| / 2==\left|F^{\prime} B^{\prime}\right|=\left|A^{\prime} F^{\prime}\right| \\
|B D|=|D C|=|B C| / 2=\left|B^{\prime} C^{\prime}\right| / 2==\left|D^{\prime} C^{\prime}\right|=\left|B^{\prime} D^{\prime}\right|
\end{aligned}
$$

Furthermore, we are given that $|\angle C A B=\angle E A F|=\left|\angle C^{\prime} A^{\prime} B^{\prime}=\angle E^{\prime} A^{\prime} F^{\prime}\right|,|\angle A B C=\angle F B D|=$ $\left|\angle A^{\prime} B^{\prime} C^{\prime}=\left|\angle F^{\prime} B^{\prime} D^{\prime}\right|\right.$, and $| \angle A C B=\angle E C D\left|=\left|\angle A^{\prime} C^{\prime} B^{\prime}=\angle E^{\prime} C^{\prime} D^{\prime}\right|\right.$. so by SAS we have the congruences $\triangle E A F \cong \triangle E^{\prime} A^{\prime} F^{\prime}, \triangle F B D \cong \triangle F^{\prime} B^{\prime} D^{\prime}$, and $\triangle E C D \cong \triangle E^{\prime} C^{\prime} D^{\prime}$.■
(a) The triangle congruences in (a) imply that $|E F|=\left|E^{\prime} F^{\prime}\right|,|D F|=\left|D^{\prime} F^{\prime}\right|$ and $|D E|=$ $\left|D^{\prime} E^{\prime}\right|$. Therefore we also have $\triangle D E F \cong \triangle D^{\prime} E^{\prime} F^{\prime}$ by SSS.■
(c) Consider $\triangle A B C$ and $\triangle A F E$ first. By SAS similarity we have $\triangle A F E \sim \triangle A B C$ with ratio of similitude equal to $\frac{1}{2}$. Therefore $|E F|=|B C| / 2$. Similarly $\left|E^{\prime} F^{\prime}\right|=\left|B^{\prime} C^{\prime}\right| / 2$. Interchanging the roles of A, B, C and D, E, F (and the corresponding primed vertices) in a compatible manner consistent with the midpoint notation, we likewise concludde that $|D F|=|A C| / 2,\left|D^{\prime} F^{\prime}\right|=\left|A^{\prime} C^{\prime}\right| / 2$, $|D E|=|A B| / 2$ and $\left|D^{\prime} E^{\prime}\right|=\left|A^{\prime} B^{\prime}\right| / 2$. Combining this with $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$, by SSS congruence we obtain

$$
\begin{gathered}
\triangle A E F \cong \triangle F D B \cong \triangle C E D \cong \triangle D F E \cong \\
\triangle A^{\prime} E^{\prime} F^{\prime} \cong \triangle F^{\prime} D^{\prime} B^{\prime} \cong \triangle C^{\prime} E^{\prime} D^{\prime} \cong \triangle D^{\prime} F^{\prime} E^{\prime}
\end{gathered}
$$

which is what we wanted to prove; in subsequent exercises we shall see that the analogous result in hyperbolic geometry is false.
12. (a) Suppose first that we have a Saccheri quadrilateral $\diamond A B C D$ in a hyperbolic plane with base $[A B]$. By a theorem in Section 16.3 of Moise, we know that $|A B| \leq|C D|$, and furthermore by a previous exercise we know that if the Saccheri quadrilateral is a rectangle if equality holds. Since rectangles do not exist in a hyperbolic plane, we must have the strict inequality $|A B|<|C D|$.

Now suppose that that we have a Lambert quadrilateral $\diamond A B C D$ in a hyperbolic plane with right angles at A, B, C. By Exercise V.3.9 and V.3.10 we know that $d(A, B) \leq d(C, D)$ and $d(A, D) \leq d(B, C)$, and if either $d(A, B)=d(C, D)$ or $d(A, D)=d(B, C)$ then the Lambert quadrilateral is a rectangle. As above, since rectangles do not exist in a hyperbolic plane, we must have the strict inequalities $d(A, B)<d(C, D)$ and $d(A, D)<d(B, C)$.
(b) This follows fairly directly from results in Section 4 of the notes. By an exercise from the preceding section, we know that the lines containing the summit and base of the Saccheri quadrilateral have a common perpendicular, and the theorem from the notes says that the shortest distance from a point on one line to the other is realized at the points where the two parallel lines meet this common perpendicular. Since the lines containing the lateral sides of a Saccheri quadrilateral are perpendicular to the line containing the base, it follows that the length of a lateral side must be greater than the length of the segment joining the midpoints of the summit and base, for the line joining these two points is the common perpendicular. -
(c) In a Saccheri quadrilateral both summit angles are acute and have the same angular measure. The first assertion follows because the angle sum of a convex quadrilateral in hyperbolic geometry is always less than 360°. In contrast, a Lambert quadrilateral has three right angles at the vertices, and only the remaining vertex angle can be acute.
13. If we split a triangle $\triangle A B C$ into two triangles by a segment $[B D]$ where $D \in(A C)$, then we have

$$
\delta(\triangle A B C)=\delta(\triangle A B D)+\delta(\triangle A D C)
$$

and since all numbers in sight are positive it follows that at least one of the numbers on the right hand side is less than or equal to $\frac{1}{2} \delta(\triangle A B C)$.

The preceding argument shows that if we are given $\triangle A B C$ then there is some triangle $\triangle X_{1} Y_{1} Z_{1}$ such that $\delta\left(\Delta X_{1} Y_{1} Z_{1}\right) \leq \frac{1}{2} \delta(\Delta A B C)$. Repeating this process, for each n we can construct a triangle $\triangle X_{n} Y_{n} Z_{n}$ such that $\delta\left(\Delta X_{n} Y_{n} Z_{n}\right) \leq \delta(\Delta A B C) / 2^{n}$. One can now use the Archimedian Property to show there is some n for which the right hand side is less than h.
14. (a) As in the proof of the Hyperbolic AAA Congruence Theorem we know that the defects satisfy $\delta(\triangle A D E)<\delta(\triangle A B C)$. If we apply the Isosceles Triangle Theorem and the definition of defect to both triangles we find that $180-|\angle B A C|-2|\angle A D E|=\delta(\triangle A D E)<\delta(\triangle A B C)=$ $180-|\angle B A C|-2|\angle A B C|$ and from this point one can use standard manipulations with inequalities to prove that $|\angle A D E|>|\angle A B C|$..
(b) Since equilateral triangles are equiangular, we know that $|\angle B A C|=|\angle A B C|=|\angle B C A|$; let us denote this common value by ξ. Since D, E and F are midpoints of the sides of an equilateral triangle, we know that $|A F|=|F B|=|B D|=|D C|=|C E|=|E A|$ and therefore we have $\triangle A E F \cong \triangle B F D \cong \triangle C D E$ by SAS.

.All three of these smaller triangles are isosceles, so that we also have

$$
|\angle A E F|=|\angle A F E|=|\angle B F D|=|\angle B D F|=|\angle C D E|=|\angle C E D|
$$

and we shall denote the common value by η.

The triangle congruences also imply

$$
|E F|=|F D|=|D E|
$$

and hence $\triangle D E F$ is also an equilateral triangle. Thus it is also equiangular, so let φ be the measure of the three vertex angles. The second relationship to proved in the exercise then translates to showing that $\varphi>\xi$.

Since we are working in hyperbolic geometry we know that the angle sum of, say, $\triangle A E F$ is less than 180 degrees, and if we substitute the values ξ and η into this inequality we find that $\xi+2 \eta<180$.

A picture suggests that we should also have $\varphi+2 \eta=180$, but we need to prove this. A key step in doing this is to show that E lies in the interior of $\angle D F A$. To prove this, first observe that the betweenness relations $C * E * A$ and $C * D * B$ imply that C, D and E all lie on the same side of $A B$. Next, the betweenness relations $A * F * B$ and $C * D * B$ imply that B lies on the side of $F D$ opposite both C and A, so that A and C lie on the same side of $D F$. Finally, $E \in(A C)$ now implies that A and E must lie on the same side of $D F$, completing the requirements for E to lie in the interior of $\angle D F A$.

The preceding paragraph implies that $|\angle D F A|=|\angle D F E|+|\angle E F A|=\varphi+\eta$. Since $A * F * B$ holds, we also have

$$
180=|\angle D F A|+|\angle D F B|=\varphi+\eta+\eta=\varphi+2 \cdot \eta
$$

which was the claim at the beginning of the preceding paragraph. It now follows that

$$
\xi+2 \cdot \eta<180=\varphi+2 \cdot \eta
$$

which implies $\xi<\eta$, proving the inequality stated in the second assertion of the exercise.
Finally, we need to show that the isosceles triangle $\triangle A E F$ is not an equilateral triangle. However, the preceding exercise implies that

$$
|\angle E F A|>|\angle A B C|
$$

and since the right hand side is equal to $\mid \angle C A B=\angle E A F$, we can use "the larger angle is opposite the longer side" to conclude that $|A E|<|F A|$.
15. We know that there is a ray $[D X$ such that $(D X$ lies on the same side of $A B$ as C and $|\angle E D A|=|\angle C B A|$. The rays $[D X$ and $[B C$ cannot have a point in common, for if they met at some point Y then the Exterior Angle Theorem would imply $|\angle E D A|>|\angle C B A|$ and by construction these two numbers are equal.

By Pasch's Theorem the line $D X$ must have a point in common with either $[B C]$ or $(A C)$. Since $[D X$ and $[B C$ have no points in common by the preceding paragraph, it follows that there must be a point $E \in(A C) \cap D X$. Since $A * E * C$ is true, it follows that E and C lie on the same side of $A B$, so that $[D E=[D X$.

Since $A * E * C$ is true, it follows that E and C lie on the same side of $A B$, so that $[D E=[D X$. Furthermore, since $E \in(A C)$ and $D \in(A B)$, the angle defects of $\triangle A B C$ and $\triangle A D E$ satisfy

$$
\delta(\Delta A B C)=\delta(\Delta A D E)+\delta(\Delta E D C)+\delta(\Delta D B C)
$$

so that $\delta(\triangle A D E)<\delta(\triangle A B C)$. On the other hand, by construction we have

$$
\delta(\triangle A B C)-\delta(\Delta A D E)=|\angle A E D|-|\angle A C B|
$$

and since the left hand side is positive it follows that $|\angle A E D|>|\angle A C B|$, which is what we wanted to prove.
16. Suppose that the ray $\left[A C\right.$ bisects $\angle D A B$. Then we have $|\angle C A D|=|\angle D A B|=45^{\circ}$.

On the other hand, since $\triangle A B C$ is an isosceles triangle with a right angle at B, it will follow that $|\angle A C B|=45^{\circ}$. In particular, this means that the angle defect of $\triangle A B C$ is zero. This cannot happen in a hyperbolic plane, and therefore the ray $[A C$ cannot bisect $\angle D A B . ■$
17. Follow the hint, so that B is a point not on a line L such that there are at least two parallel lines to L through B. One of the lines can be constructed by dropping a perpendicular from B to L whose foot we shall call Y, and then taking a line M which is perpendicular to $B Y$ and passes through B. Let N be a second line through B which is parallel to L.

Since L and M are parallel, all points of L lie on the same side of M. Since N contains points on both sides of M, it follows that there is some point A which lie on N and also on the same side of M as L. Note that $A \notin B Y$, because $N \cap B Y=\{B\}$ and $B \in M$. Since M contains points on both sides of $B Y$, there is also a point $C \in M$ which lies on the side of $B Y$ which does not contain A (hence A and C lie on opposite sides of $B Y$).

We claim that L is contained in the interior of $\angle A B C$. The first step is to show that Y lies in the interior of this angle. By construction we know that $Y \in L$ and since L and A lie on the same
side of M, it follows that Y and A lie on the same side of $M=B C$. On the other hand, since A and C lie on opposite sides of $B Y$ we know there is a point $Z \in(A C) \cap B Y$. It follows that A and Z lie on the same side of $B C=M$, and since A and Y also lie on the same side of M it follows that $(B Y=(B Z$. But this means that C, Z and Y must all lie on the same side of $N=A B$. Thus we have shown that Y lies in the interior of $\angle A B C$.

Since L does not have any points in common with either M or N, it follows that all points of L lie on the same side of each line. We have seen that $Y \in L$ lies on the same side of $M=B C$ as A and on the same side of $N=A B$ as C, and therefore the same must be true for every point of L. But this means that L is contained in the interior of $\angle A B C . \square$
(b) The location of the line L is arbitrary, so it is useful to begin by disposing of a special case first. If L contains the vertex B, then $B \notin \operatorname{Int} A B C$ and we are done. Assume henceforth that $B \notin L$.

We know that the lines $A B$ and $B C$ are distinct, so at most one of them is parallel to L; let M be a line in $\{A B, A C\}$ which is not parallel to L. Then L must contain a point of $A B$ or $A C$. Since both of these lines are disjoint from $\operatorname{Int} A B C$ it follows that L must contain a point which is not in the interior of the angle.

