
Math 133
Fall 2021

SOLUTIONS FOR “MORE WEEK 08 EXERCISES”

11. (a) The midpoint conditions imply the following equations:

|AE| = |EC| = |AC|/2 = |A′C ′|/2 = = |E′C ′| = |A′E′|

|AF | = |FC| = |AB|/2 = |A′B′|/2 = = |F ′B′| = |A′F ′|

|BD| = |DC| = |BC|/2 = |B′C ′|/2 = = |D′C ′| = |B′D′|

Furthermore, we are given that |6 CAB = 6 EAF | = |6 C ′A′B′ = 6 E′A′F ′|, |6 ABC = 6 FBD| =
|6 A′B′C ′ = | 6 F ′B′D′|, and |6 ACB = 6 ECD| = | 6 A′C ′B′ = 6 E′C ′D′|. so by SAS we have the
congruences 4EAF ∼= 4E′A′F ′, 4FBD ∼= 4F ′B′D′, and 4ECD ∼= 4E′C ′D′.

(a) The triangle congruences in (a) imply that |EF | = |E′F ′|, |DF | = |D′F ′| and |DE| =
|D′E′|. Therefore we also have 4DEF ∼= 4D′E′F ′ by SSS.

(c) Consider 4ABC and 4AFE first. By SAS similarity we have 4AFE ∼ 4ABC with ratio
of similitude equal to 1

2 . Therefore |EF | = |BC|/2. Similarly |E′F ′| = |B′C ′|/2. Interchanging the
roles of A,B,C and D,E, F (and the corresponding primed vertices) in a compatible manner con-
sistent with the midpoint notation, we likewise concludde that |DF | = |AC|/2, |D′F ′| = |A′C ′|/2,
|DE| = |AB|/2 and |D′E′| = |A′B′|/2. Combining this with 4ABC ∼= 4A′B′C ′, by SSS congru-
ence we obtain

4AEF ∼= 4FDB ∼= 4CED ∼= 4DFE ∼=

4A′E′F ′ ∼= 4F ′D′B′ ∼= 4C ′E′D′ ∼= 4D′F ′E′

which is what we wanted to prove; in subsequent exercises we shall see that the analogous result
in hyperbolic geometry is false.

12. (a) Suppose first that we have a Saccheri quadrilateral ♦ABCD in a hyperbolic plane with
base [AB]. By a theorem in Section 16.3 of Moise, we know that |AB| ≤ |CD|, and furthermore by
a previous exercise we know that if the Saccheri quadrilateral is a rectangle if equality holds. Since
rectangles do not exist in a hyperbolic plane, we must have the strict inequality |AB| < |CD|.

Now suppose that that we have a Lambert quadrilateral ♦ABCD in a hyperbolic plane with
right angles at A, B, C. By Exercise V.3.9 and V.3.10 we know that d(A,B) ≤ d(C,D) and
d(A,D) ≤ d(B,C), and if either d(A,B) = d(C,D) or d(A,D) = d(B,C) then the Lambert
quadrilateral is a rectangle. As above, since rectangles do not exist in a hyperbolic plane, we must
have the strict inequalities d(A,B) < d(C,D) and d(A,D) < d(B,C).

(b) This follows fairly directly from results in Section 4 of the notes. By an exercise from
the preceding section, we know that the lines containing the summit and base of the Saccheri
quadrilateral have a common perpendicular, and the theorem from the notes says that the shortest
distance from a point on one line to the other is realized at the points where the two parallel
lines meet this common perpendicular. Since the lines containing the lateral sides of a Saccheri
quadrilateral are perpendicular to the line containing the base, it follows that the length of a lateral
side must be greater than the length of the segment joining the midpoints of the summit and base,
for the line joining these two points is the common perpendicular.
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(c) In a Saccheri quadrilateral both summit angles are acute and have the same angular mea-
sure. The first assertion follows because the angle sum of a convex quadrilateral in hyperbolic
geometry is always less than 360◦. In contrast, a Lambert quadrilateral has three right angles at
the vertices, and only the remaining vertex angle can be acute.

13. If we split a triangle ∆ABC into two triangles by a segment [BD] where D ∈ (AC), then
we have

δ(4ABC) = δ(4ABD) + δ(4ADC)

and since all numbers in sight are positive it follows that at least one of the numbers on the right
hand side is less than or equal to 1

2δ(4ABC).

The preceding argument shows that if we are given 4ABC then there is some triangle 4X1Y1Z1

such that δ(∆X1Y1Z1) ≤ 1
2δ(∆ABC). Repeating this process, for each n we can construct a

triangle 4XnYnZn such that δ(∆XnYnZn) ≤ δ(∆ABC)/2n. One can now use the Archimedian
Property to show there is some n for which the right hand side is less than h.

14. (a) As in the proof of the Hyperbolic AAA Congruence Theorem we know that the defects
satisfy δ(∆ADE) < δ(∆ABC). If we apply the Isosceles Triangle Theorem and the definition of
defect to both triangles we find that 180 − |6 BAC| − 2|6 ADE| = δ(∆ADE) < δ(∆ABC) =
180 − | 6 BAC| − 2|6 ABC| and from this point one can use standard manipulations with inequalities
to prove that |6 ADE| > | 6 ABC|.

(b) Since equilateral triangles are equiangular, we know that |6 BAC| = | 6 ABC| = | 6 BCA|;
let us denote this common value by ξ. Since D, E and F are midpoints of the sides of an equilateral
triangle, we know that |AF | = |FB| = |BD| = |DC| = |CE| = |EA| and therefore
we have ∆AEF ∼= ∆BFD ∼= ∆CDE by SAS.

.All three of these smaller triangles are isosceles, so that we also have

| 6 AEF | = |6 AFE| = |6 BFD| = |6 BDF | = | 6 CDE| = | 6 CED|

and we shall denote the common value by η.
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The triangle congruences also imply

|EF | = |FD| = |DE|

and hence ∆DEF is also an equilateral triangle. Thus it is also equiangular, so let ϕ be the measure
of the three vertex angles. The second relationship to proved in the exercise then translates to
showing that ϕ > ξ.

Since we are working in hyperbolic geometry we know that the angle sum of, say, ∆AEF is
less than 180 degrees, and if we substitute the values ξ and η into this inequality we find that
ξ + 2η < 180.

A picture suggests that we should also have ϕ + 2η = 180, but we need to prove this. A key
step in doing this is to show that E lies in the interior of 6 DFA. To prove this, first observe that
the betweenness relations C ∗E ∗A and C ∗D ∗B imply that C, D and E all lie on the same side
of AB. Next, the betweenness relations A ∗ F ∗ B and C ∗D ∗ B imply that B lies on the side of
FD opposite both C and A, so that A and C lie on the same side of DF . Finally, E ∈ (AC) now
implies that A and E must lie on the same side of DF , completing the requirements for E to lie in
the interior of 6 DFA.

The preceding paragraph implies that |6 DFA| = |6 DFE|+ | 6 EFA| = ϕ+ η. Since A ∗F ∗B
holds, we also have

180 = |6 DFA| + |6 DFB| = ϕ + η + η = ϕ + 2 · η

which was the claim at the beginning of the preceding paragraph. It now follows that

ξ + 2 · η < 180 = ϕ + 2 · η

which implies ξ < η, proving the inequality stated in the second assertion of the exercise.

Finally, we need to show that the isosceles triangle ∆AEF is not an equilateral triangle.
However, the preceding exercise implies that

| 6 EFA| > | 6 ABC|

and since the right hand side is equal to |6 CAB = 6 EAF , we can use “the larger angle is opposite
the longer side” to conclude that |AE| < |FA|.

15. We know that there is a ray [DX such that (DX lies on the same side of AB as C and
|6 EDA| = | 6 CBA|. The rays [DX and [BC cannot have a point in common, for if they met at some
point Y then the Exterior Angle Theorem would imply |6 EDA| > | 6 CBA| and by construction
these two numbers are equal.

By Pasch’s Theorem the line DX must have a point in common with either [BC] or (AC).
Since [DX and [BC have no points in common by the preceding paragraph, it follows that there
must be a point E ∈ (AC) ∩DX. Since A ∗E ∗C is true, it follows that E and C lie on the same
side of AB, so that [DE = [DX.
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Since A ∗ E ∗ C is true, it follows that E and C lie on the same side of AB, so that [DE = [DX.
Furthermore, since E ∈ (AC) and D ∈ (AB), the angle defects of ∆ABC and ∆ADE satisfy

δ(∆ABC) = δ(∆ADE) + δ(∆EDC) + δ(∆DBC)

so that δ(∆ADE) < δ(∆ABC). On the other hand, by construction we have

δ(∆ABC) − δ(∆ADE) = | 6 AED| − |6 ACB|

and since the left hand side is positive it follows that |6 AED| > | 6 ACB|, which is what we wanted
to prove.

16. Suppose that the ray [AC bisects 6 DAB. Then we have |6 CAD| = |6 DAB| = 45◦.

On the other hand, since ∆ABC is an isosceles triangle with a right angle at B, it will follow that
|6 ACB| = 45◦. In particular, this means that the angle defect of ∆ABC is zero. This cannot
happen in a hyperbolic plane, and therefore the ray [AC cannot bisect 6 DAB.

17. Follow the hint, so that B is a point not on a line L such that there are at least two parallel
lines to L through B. One of the lines can be constructed by dropping a perpendicular from B to
L whose foot we shall call Y , and then taking a line M which is perpendicular to BY and passes
through B. Let N be a second line through B which is parallel to L.

Since L and M are parallel, all points of L lie on the same side of M . Since N contains points on
both sides of M , it follows that there is some point A which lie on N and also on the same side
of M as L. Note that A 6∈ BY , because N ∩ BY = {B} and B ∈ M . Since M contains points on
both sides of BY , there is also a point C ∈M which lies on the side of BY which does not contain
A (hence A and C lie on opposite sides of BY ).

We claim that L is contained in the interior of 6 ABC. The first step is to show that Y lies in
the interior of this angle. By construction we know that Y ∈ L and since L and A lie on the same
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side of M , it follows that Y and A lie on the same side of M = BC. On the other hand, since A
and C lie on opposite sides of BY we know there is a point Z ∈ (AC)∩BY . It follows that A and
Z lie on the same side of BC = M , and since A and Y also lie on the same side of M it follows
that (BY = (BZ. But this means that C, Z and Y must all lie on the same side of N = AB. Thus
we have shown that Y lies in the interior of 6 ABC.

Since L does not have any points in common with either M or N , it follows that all points of
L lie on the same side of each line. We have seen that Y ∈ L lies on the same side of M = BC as
A and on the same side of N = AB as C, and therefore the same must be true for every point of
L. But this means that L is contained in the interior of 6 ABC.

(b) The location of the line L is arbitrary, so it is useful to begin by disposing of a special case
first. If L contains the vertex B, then B 6∈ IntABC and we are done. Assume henceforth that
B 6∈ L.

We know that the lines AB and BC are distinct, so at most one of them is parallel to L; let
M be a line in {AB,AC} which is not parallel to L. Then L must contain a point of AB or AC.
Since both of these lines are disjoint from IntABC it follows that L must contain a point which is
not in the interior of the angle.
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