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5 : Consistency and uniqueness of neutral geometries 

I have developed this geometry to my own satisfaction so that I can solve 
every problem that arises in it with the exception of the determination of 
a certain constant which cannot be determined a priori. 

Gauss, previously cited letter to Taurinus, 1824 

We have noted that the geometry and trigonometry of a hyperbolic plane were worked 
out completely in the early 19th century; more precisely, the formulas for rectangular and 
polar coordinate systems, trigonometry, and measurements and volumes are just as 
complete as they are for the Euclidean plane even though they are a usually great deal 
more complicated.   A detailed treatment of this material is beyond the scope of this 
course.  However, a great deal of appears in the book by Greenberg cited below; we 
shall also list several basic references for additional information about hyperbolic 
geometry. 

H. S. M. Coxeter, Non – Euclidean Geometry (6
th

 Ed.), Mathematical
Association of America, Washington, DC, 1998.  

R. Bonola, Non – Euclidean Geometry (Transl. by H. S. Carslaw). Dover, 
New York, 1955.  

K. Borsuk and W. Szmielew, Foundations of Geometry (Rev. English 
Transl.). North Holland, Amsterdam (NL), 1960. 

W. T. Fishback, Projective and Euclidean Geometry (2
nd

 Ed.). Wiley, New
York, 1969.  

M. J. Greenberg, Euclidean and non – Euclidean geometries: Development and 
history (Fourth Ed.). W. H. Freeman, New York, NY, 2007.  

P. Ryan, Euclidean and non – Euclidean geometry: An analytical approach. 
Cambridge University Press, Cambridge, U. K., and New York, NY, 1986.  

H. E. Wolfe, Introduction to Non-Euclidean Geometry. Holt, New York, 
1945. 

http://www.msc.uky.edu/droyster/courses/spring08/math6118/ 

In this section we shall concentrate on a few topics that are closely related to previously 
discussed results in Euclidean geometry or are relevant to the remaining sections of this 
unit. 

Uniqueness theorems for neutral geometries 

We have abstractly defined a hyperbolic plane to be a system satisfying certain axioms. 
However, in mathematical writings one often sees references to  THE  hyperbolic plane 
as if there is only one of them, just as we talk about  THE  real number system or  THE  
Euclidean plane.   In all cases, the reason for this is that all such systems are 
characterized uniquely up to suitable notions of mathematical equivalence.   

Formally, this may be stated as follows: 

Lecture 19 

begins here
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Theorem 1.  (Essential uniqueness of hyperbolic planes)   Assume that  �����, �, d, αααα�

and  ������′′′′, ��′′′′, d��′′′′, αααα�′′′′�  are hyperbolic planes.   Then there is a  1 � 1  correspondence 

T from  ����  to  �����′′′′ with the following properties:

1. If  x  and  y  are arbitrary distinct points of  ����,  then there is a positive

constant  k  such that  T  multiplies the distance between them by  k ;  in other

words, we have  k d(x, y)   �   d��′′′′( T(x), T(y) ).

2. The function  T  sends collinear points (with respect to �)  to collinear points

(with respect to ��′′′′)  and noncollinear points (with respect to �)  to
noncollinear points (with respect to ��′′′′) .

3. If  x,  y,  z  are noncollinear points of   ����,  then  T  preserves the

measurement of the angle they form; in other words, we have

xxxxxxxxxxxxαααα ∠∠∠∠xyz   ��  αααα�′′′′ ∠∠∠∠ T(x)T(y)T(z) .

The important point about the  1 � 1  correspondence  T  is its compatibility with the

data for the two hyperbolic planes.  Using this mapping as a “codebook,” it is possible to 
translate every true statement about one of the systems into a true statement about the 
other, and likewise it every false statement about one system translates into a statement 
which is also false for the other system. 

In principle, this result for hyperbolic geometry was known to mathematicians such as 
Taurinus, Gauss, J. Bolyai and Lobachevsky, and it reflects their (essentially) complete 

description of the measurement formulas for non – Euclidean geometry and its 
associated trigonometry.   Proofs of the uniqueness theorem are discussed further in 
Chapter  10  of Greenberg and Chapter  V I  (particularly Sections  30  and  31) of the 

previously cited book by Borsuk and Szmielew.���� 

If we define a neutral plane to be  Euclidean  if Playfair’s Postulate is true, then there is 
a corresponding but slightly stronger uniqueness theorem for Euclidean planes: 

Theorem 2.  (Essential uniqueness of Euclidean planes)   Suppose that  �����, �, d, αααα�

and  ������′′′′, ��′′′′, d �′′′′, αααα′′′′�  are hyperbolic planes.   Then there is a  1 � 1  correspondence 

T  from  ����  to  �����′′′′ with the following properties:

1. If  x  and  y  are arbitrary distinct points of  ����,  then  T  preserves the

distance between them; in other words, we have  d(x, y)   �   d��′′′′( T(x), T(y) ).

2. The function  T  sends collinear points (with respect to �)  to collinear points

(with respect to ��′′′′)  and noncollinear points (with respect to �)  to
noncollinear points (with respect to ��′′′′).

3. If  x, y, z  are noncollinear points of   ����,  then  T  preserves the measurement

of the angle they form; in other words, we have xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxαααα ∠∠∠∠xyz   ��  αααα�′′′′ ∠∠∠∠ T(x)T(y)T(z) .

Observe that a constant factor  k  does   not   appear in the statement of the Eucldean 
result.  One way of explaining the difference is that there are similarity transformations in 
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Euclidean geometry with arbitrary positive rations of similitude, but in hyperbolic 
geometry every similarity transformation is an isometry (this reflects the conclusion of 

the hyperbolic  A.A.A. Triangle Congruence Theorem; namely, similar triangles in a 
hyperbolic plane are automatically congruent).  

The proof of the Euclidean uniqueness theorem reflects the standard method for 
introducing Cartesian coordinates into Euclidean geometry, and in principle the details 
are worked out in Chapter  17  of the previously cited book by Moïse (some material in 

Section  26.3  is also relevant).���� 

Euclidean approximations to hyperbolic geometry 

For small enough regions on the surface of a sphere, ordinary experience and the 
explicit formulas of spherical trigonometry show that Euclidean plane geometry is a very 
accurate approximation to spherical geometry.  The situation for hyperbolic geometry is 
entirely similar; if we restrict attention to sufficiently small regions, the formulas of 
hyperbolic trigonometry and geometry show that Euclidean geometry is an extremely 
accurate approximation and that the degree of accuracy increases as the size of the 
region becomes smaller.  For example, since the angle defect of a hyperbolic triangle 

determines its area, it follows that the angle sum of a triangle is very close to  180 
degrees for all triangles in a very small region of the hyperbolic plane.  In both spherical 
and hyperbolic geometry, as the diameter of a region approaches zero, the formulas of 
spherical and hyperbolic geometry in the region converge to the standard formulas of 
Euclidean geometry.  

Consistency models in mathematics 

Although Gauss, J. Bolyai, Lobachevsky and others concluded that there was no way to 
prove Euclid’s Fifth Postulate from the other assumptions, they did not actually prove 
this fact.  Their results gave a virtually complete and apparently logically consistent 
description of hyperbolic geometry, but  something more was needed to eliminate, or 
at least isolate, all doubts that someone might still succeed in finding a logical 
contradiction in the system. 

Mathematical statements that something cannot be found are frequently misunderstood, 
so we shall explain what is needed to show that a mathematical system is at least 
relatively free from logical contradictions.   The discussion must begin on a somewhat 

negative note:  Fundamental results of K. Gödel (1906 – 1978) imply that we can never 
be absolutely sure that any finite set of axioms for ordinary arithmetic (say, over the 

nonnegative integers) is totally free from logical contradictions.  One far – reaching 
consequence is that  there is also no way of showing that any infinite mathematical 

system is absolutely logically consistent.  The best we can expect is to show that 

such a system will be relatively logically consistent ; in other words,  if there is a 
logical contradiction in the system, then one can trace it back to a logical 
contradiction in our standard axioms for the nonnegative integers.   The following 
quotation due to André Weil (pronounced “VAY,” 1906 – 1998) gives a whimsical 
reaction which reflects current mathematical thought: 

God exists since mathematics is consistent, and 
the Devil exists since we cannot prove it. 
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The standard way to prove relative logical consistency is to construct a model for the 
axioms.  Such models are to be constructed using data based upon the standard 
number systems of mathematics (the nonnegative integers, the integers, the rational 
numbers, the real numbers or the complex numbers); the mathematical descriptions of 
these number systems show that all of them pass the relative consistency test described 
in the previous paragraph.   If we can construct such a model, then one has the following 

proof for RELATIVE logical consistency :   Suppose that there is a logical 
contradiction in the underlying axiomatic system.  Using the model, one can translate 
every statement about the model for the system into a statement about the mathematical 
number systems mentioned above, and thus the logical contradiction in the axiomatic 
system then yields a contradiction about these number systems.  In other words, if there 
is a contradiction in the axioms, then there must also be a contradiction in the standard 
description of the standard number systems in mathematics.  

If we consider the synthetic axioms for a Euclidean plane �����, �, d, αααα�, the standard

model is given by the so – called Cartesian coordinate plane, in which the set  ����  of 

points equal to  ����
2
, the family  �� of lines is the usual of family subsets defined by

nontrivial linear equations in  x  and  y, the distance  d  between two points is given by 

the usual Pythagorean formula, and the cosine of  α  α  α  α  is given by the standard formula 
involving inner products.   In order to prove this is a model for the axioms, it is necessary 
to  verify explicitly that all the axioms for Euclidean geometry  

(namely, the Incidence Axioms, 
the Ruler and Plane Separation Postulates, 

the Angle Measurement Postulates, 
the Triangle Congruence Postulates 

and the Proclus � Playfair Parallel Postulate)

are true for the given definitions of points, lines, distance and angle measure.   
Some steps in this process are fairly simple to complete, but others are long, difficult, 
and not particularly enlightening.  It is frequently convenient to split the proof into two 
parts. 

1. Replacement of the axiom system with an equivalent “reduced” one that
requires fewer assumptions.  (This can be long and difficult.)

2. Verification of the axioms in the “reduced” system.

We shall describe one relatively quick way of carrying out these steps for the Cartesian 
coordinate model of the synthetic axioms for Euclidean geometry.  One particularly 
concise set of axioms for a Euclidean plane, consisting of only four statements, is given 
in the following classic paper:  

G. D. Birkhoff, A set of postulates for plane geometry (based on scale and 
protractors),  Annals of Mathematics  (2)  33 (1932),  pp. 329 – 345. 

A verification of Birkhoff’s postulates for the Cartesian coordinate model is given 
explicitly in the following online document: 

http://www.math.uiuc.edu/~gfrancis/M302/handouts/postulates.pdf 

Alternate approaches to verifying the axioms for Euclidean geometry in the Cartesian 
model appear various sections of Moïse, mainly in Chapter 26.  

Incidence 
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The logical consistency of hyperbolic geometry 

In view of the preceding discussion, it will follow that the Fifth Postulate is not provable 

from the other axioms if we can construct a model of a neutral plane  �����, �, d, αααα�  which

does not satisfy Playfair’s Postulate.  The first such model was constructed by E. 
Beltrami (1835 – 1900) in his paper, Saggio di interpretazoine della geometria non 
euclidea, which appeared in 1868,  with subsequent refinements due to F. Klein (1849 – 

1925).  This model is frequently called the Beltrami � Klein model.  Much of the 

discussion below is adapted from the following online site: 

http://www.cut-the-knot.org/triangle/pythpar/Model.shtml 

The Beltrami – Klein model takes the interior of a circle as the set of points for a plane; 
recall that this region does not include points on the circle itself. The lines are given by 
open chords connecting points on the circle, with the endpoints excluded.   It is not 

difficult to check that this system satisfies the basic incidence axioms, and the drawing 
above suggests an argument to show that Playfair’s Postulate does not hold for points 
and lines in the Beltrami – Klein model.  Specifically, in this picture the Beltrami – Klein 

lines ( � open chords)  AC  and  BD  pass through point  P  and neither meets the
open  chord  AB (with the endpoints removed).  

Defining the distance and angle measurement for the Beltrami – Klein model is 
considerably more difficult; we shall only define the distance.  Since hyperbolic geometry 

is unbounded, in order to realize it in a bounded region of  ����
2
, it is necessary to define 

distance so that the distance from one point to another goes to infinity if one is fixed and 
the other approaches the boundary circle.   

Given two points  P  and  Q  in the open disk, suppose that the Euclidean line joining 

them meets the circle at points  S  and  T.   Then the Beltrami – Klein distance between 

P  and  Q  is defined by the following strange looking formula:  

dBK(P, Q)    ��   | log e ( ��Q � S�⋅⋅⋅⋅�P � T�����P � S�⋅⋅⋅⋅�Q � T��) | 

Here  �X � Y�  denotes the Euclidean distance between  X  and  Y.   It is a routine

exercise to check that if  Q  moves away from a fixed  P  staying on the same line, the 

Beltrami – Klein distance between the two points grows without bound.   This curious 
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property of the model sounds somewhat like a line from Shakespeare’s play, Hamlet 

(Act  I I, Scene  2, line  234): 

I could be bounded in a nutshell, and count myself king of infinite space. 

Higher dimensions.  There are analogs of the Beltrami – Klein model for hyperbolic 

n � space in every dimension  n  �  3.  

Beltrami’s model finally gave a definitive answer to questions about the role of 
Euclid’s Fifth Postulate, showing that  it is impossible to prove this postulate or an 
equivalent statement from the other usual sorts of axioms.  In many respects, this 
outcome is extremely ironic.  Many of the early efforts to prove the Fifth Postulate were 
motivated by a belief that its inclusion was a logical shortcoming of the  Elements.  For 
example, the title to Saccheri’s work on the subject began with the words which translate 
to  Euclid vindicated, and the following quotation from a letter to J. Bolyai from his 

father Farkas (Wolfgang) Bolyai (1775 – 1856) expresses a similar view : 

I [also] thought … I was ready to … remove the flaw from geometry and 
return it purified to mankind. 

In fact, as noted in the book by Moïse (see pages  158 – 159)  the _real_ vindication of 
Euclid took place with the construction of Beltrami’s example, which showed that 
something like the Fifth Postulate is logically indispensable for the development of 
classical Euclidean geometry and indicates a very respectable level of insight on 
Euclid’s part into the logical structure of deductive geometry. 

Following the construction of the Beltrami – Klein model, several other models were also 
described, and a few will be described or referred to in the next section.   

Compare to the 

earlier "method in 

madness" quote
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6 : Subsequent developments 

In Section  2  we indicated how advances in mathematics during the 17th and 18th 
centuries provided an important background for the work which led to the emergence of 

non – Euclidean geometry.  Mathematical knowledge increased at an even faster pace 
during the 19th century; one superficial way of seeing this is to compare the amount of 
space devoted to that period in Kline’s Mathematical Thought from Ancient to 
Modern Times to the amount of space devoted to the entire period before 1800.  In 
every area of the subject there were dramatic new discoveries, major breakthroughs in 
understanding, and substantially greater insight into logical justifications for the many 
advances of the previous three centuries.  Within geometry, there were several major 

developments in addition to the emergence of non � Euclidean geometry.   These 
include the systematic approach to curves and surfaces by the techniques of differential 
geometry, the establishment of projective geometry as a major branch of the subject, the 

explicit study of geometry in dimensions greater than  3, and the use of algebraic 
techniques to analyze geometrical constructions by unmarked straightedge and 
compass.  In particular, during the 19th century mathematicians were finally able to show 
that the following three classical Greek problems cannot be solved using only a compass 
and an unmarked straightedge:  

�� Angle trisection.  Given an arbitrary angle, find a second angle whose
degree measure is one third the measure of the original angle.

�� Circle squaring.   Given an arbitrary circle, find a square whose enclosed
area is equal to the area enclosed by the circle.

�� Cube doubling.   Given an arbitrary cube, find a second cube whose volue is
twice that of the original cube.

We shall see that such developments also turned out to have significant consequences 

for non – Euclidean geometry.  

Riemann’s approach to geometry 

We have noted that the angle sum of a triangle in Euclidean geometry is always equal to 

180°°°°, while the angle sum of a triangle in hyperbolic geometry is always less than  180°°°°. 
On the other hand, we know that the angle sum of a triangle in spherical geometry is 

always strictly greater than  180°°°°, and thus it is natural to ask if there is a unified setting 
which includes both neutral geometry and spherical geometry.  The crucial steps to 

constructing such a framework were due to G. F. B. Riemann (1826 – 1866), and his 

viewpoint led to far – reaching changes in the mathematical, physical and philosophical 
answers to the question, “What is geometry?” 
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In 1854 Riemann gave an advanced mathematical lecture, On the hypotheses which 
underlie geometry, which had a near – revolutionary mathematical impact.   The first 

step is to describe an  n � dimensional object as one in which sufficiently small pieces 

have coordinate systems which correspond to coordinates in suitable regions of  n � 
dimensional coordinate space; this concept is broad enough to include the geometries 

mentioned above and also reasonable surfaces in 3 � space.  A second fundamental 
concept in the approach, often called a metric tensor or Riemannian metric, provides 
a means for computing standard measurements including the angles at which nice 
curves intersect, the lengths of reasonably well – behaved curves, and the areas of 
surfaces.  In two dimensions a Riemannian metric is an expression that can be written in 
local coordinates as a formal expression    

E(x,  y) dx dx  �  2 F(x,  y) dx dy  �  G(x,  y) dy dy 

where  E, F and G  all have (say) continuous second partial derivatives and satisfy the 

conditions  E > 0,  G > 0, and  EG � F 
2
 > 0,   The length of a parametrized curve  γγγγ    (t)

�  (x(t),  y(t))  is then given by integrating the square root of the function given below.  

The inequalities guarantee that this function is always positive.  

s(t)  �  E(x(t),  y(t)) x′′′′(t)
2
  +  2 F(x(t),  y(t)) x′′′′(t)  y′′′′(t)  +  G(x(t),  y(t)) y′′′′(t)

2
 

In Euclidean geometry the coefficient functions are  E � G � 1 and F � 0.  For the 
Beltrami – Klein model of hyperbolic geometry the expression is more complicated: 

(1 − y
2
) dx dx  �  2 xy dx dy  �  (1 − x

2
) dy dy 

����1 − (x
2
 � y

2
)����

2
 

For “good” surfaces in 3 � space, the Riemannian metric yields the formula for arc 
length in multivariable calculus and elementary differential geometry. 

Riemann’s legacy and elliptic geometry 

Riemann’s setting provides a unified framework which encompasses spherical and 
neutral geometry.   One key point was his questioning the standard model of a line, in 
which one can find pairs of points whose distance from each other is arbitrarily large, 
and it is summarized in the following quotation from his writings: 

We must distinguish between unboundedness and infinite extent   ...  The 
unboundedness of space possesses   ...   a greater empirical certainty than 
any external experience.  But its infinite extent by no means follows from this. 

With respect to our setting for neutral geometry, this means that the Standard Ruler 
Postulate should be replaced by a Circular Ruler Postulate which states that every 

line is in  1 � 1  distance – preserving correspondence with a standard circle of some

fixed positive radius (i.e., the radius  a  is the same for every line); in analogy with our 

earlier discussion of hyperbolic geometry, the  square  a
2
  of this radius can be viewed

as a “curvature constant.”  If we adopt such a Circular Ruler Postulate, then we must 
also modify the entire discussion of order and separation.  One easy way to see this is to 
observe that there is no reasonable notion of betweenness for three points on a circle.  
However, there is a decent substitute, for if we are given four points  A,  B,  C,  D  on a 
circle then there is an obvious concept of separation for these points.   
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Specifically, we can say that  A  and  B  separate  C  and  D  if each of the two arcs 
determined by  A  and  B  contains exactly one of the points  C  and  D. 

In the drawing above, the points  A  and  B  separate  C  and  D. 

We shall not attempt to make the concept of separation precise here, but the previously 
cited books by Fishback and Coxeter contain further information.  Here are two 
additional references which discuss further topics in elliptic geometry: 

H.S.M. Coxeter,�The Real Projective Plane (3
rd

 Ed.), Springer – Verlag,
New York, 1992.  ISBN: 0–387–97890–9. 

http://eom.springer.de/R/r081890.htm 

There is still one fundamental issue that requires attention.  In neutral geometry there is 
a unique line containing two points, but the analogous statement in spherical geometry is 
not necessarily valid because there are infinitely many great circles joining a pair of 
antipodal points.  An idea due to F. Klein provides the usual way of avoiding this 
problem:  Instead of considering the geometry of the sphere, one considers a reduced 
geometry whose points are antipodal pairs of points on the sphere.   Such a 
construction was not really new, for it is essentially the underlying space in real 
projective plane geometry (see http://math.ucr.edu/~res/progeom/pg-all.pdf)    

Klein’s motivation for the name hyperbolic geometry suggests the name elliptic 
geometry for the system that one obtains from spherical geometry by identifying pairs of 
antipodal points as above; sometimes elliptic or spherical geometry is called Riemann 
or Riemannian geometry, but in mathematics and physics these terms normally refer to 
far more general constructions and thus  almost any other terms would be preferable. 
There is a corresponding name of parabolic geometry for Euclidean geometry, but this 
name has never been popular with mathematicians and is so rarely used in modern 
mathematical writings that it should be viewed as obsolete.  

Riemann’s characterization of classical geometries 

The value of non – Euclidean geometry lies in its ability to liberate us 
from preconceived ideas in preparation for the time when exploration of 
physical laws might demand some geometry other than Euclidean. 

G. F. B. Riemann 

Riemann’s unified approach to spherical and neutral geometry is merely part of a far 

more general approach of geometry.  The emergence of non � Euclidean geometry had 
suggested to Gauss and others that there was more than one “logically permissible” 
way of looking a space, depending upon which geometric properties one was willing to 
accept or do without.  Riemann’s viewpoint abandoned the idea that geometry involved 
absolute statements about space itself, replacing this with a premise that geometry 
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involves the study of theories of space.  In Riemann’s approach, one has infinitely many 
possible theoretical options for describing space.   

Even if Euclidean, hyperbolic and elliptic geometry represent only three of many possible 
theories of space, it is still clear that they represent three especially good theories.  
Therefore one of Riemann’s central aims was to give a criterion for distinguishing these 
three from the unending list of possibilities.  Within his framework, the three classical 
geometries are characterized by two special properties: 

1. The existence of many different geometrical figures isometric to a given
one.

2. A real number which is describable as a curvature constant.

For Euclidean geometry the curvature constant is zero, while for hyperbolic geometry it 
is negative and for elliptic geometry it is positive; in the last two cases, the exact value 
depends upon the unit of linear measurement one adopts.  In elliptic geometry, the 
square root of the curvature constant is the reciprocal of the radius for the corresponding 
sphere; the negativity of the curvature constant for hyperbolic geometry is related to 

Lambert’s view of the latter in terms of “a sphere of imaginary radius” (i.e., the square 
of the radius is negative).   

Additional models for hyperbolic geometry 

Most of the ties between hyperbolic geometry and other topics in mathematics involve 
mathematical models for the hyperbolic plane (and spaces of higher dimensions) which 

are different from the Beltrami – Klein models described in the preceding section.  There 
are three particularly important examples.  One model (the Lorentzian model) is 

discussed at length in Chapter 7 of Ryan, and two other basic models are named after 

H. Poincaré  (pronounced pwan � ca � RAY).   We shall only consider a few of 
properties of the Poincaré models in these notes.  Further information can be found at 
the following online sites: 

http://www.geom.uiuc.edu/docs/forum/hype/model.html 

http://www.mi.sanu.ac.yu/vismath/sazdanovic/hyperbolicgeometry/hypge.htm 

http://math.fullerton.edu/mathews/c2003/poincaredisk/PoincareDiskBib/Links/PoincareDiskBib_lnk_1.html 

http://mathworld.wolfram.com/PoincareHyperbolicDisk.html 

http://www.geom.uiuc.edu/~crobles/hyperbolic/hypr/modl/ 

Probably the most important and widely used model for hyperbolic geometry is the 

Poincaré disk model.  In the 2 � dimensional case, one starts with the points which lie

in the interior of a circle (i.e., in an open disk) as in the Beltrami – Klein model, but the 
definitions of lines, distances and angle measures are different.  The lines in this model 
are given by two types of subsets. 

1. Open “diameter” segments with endpoints on the boundary circle.

2. Open circular arcs whose endpoints lie on the boundary circle and meet the

boundary circle orthogonally (i.e., at each endpoint, the tangent to the boundary
circle is perpendicular to the tangent for the circle containing the arc).

An illustration of the second type of “line” is given below. 
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The arc containing A and B meets the boundary of the disk at right angles. 

The drawing below illustrates several lines in the Poincaré disk model. 

The Poincaré disk model distance between two points is given by a formula which 

resembles the comparable identity for the Beltrami � Klein model, and it is given in the

first online reference in the list of online sites at the beginning of this section.  On the 
other hand, one fundamentally important feature of the Poincaré disk model is that   
its angle measurement is exactly the same as the Euclidean angle between the 

two intersecting curves  (i. e., given by the usual angle between their tangents);  such 
angle measure preserving models are said to be  conformal.   In contrast, both the 

distance and the angle measurement in the Beltrami � Klein model are different from

their Euclidean counterparts. 

The second Poincaré model in two dimensions is the Poincaré half � plane model,

and its points are given by the points in the upper half plane of  ����
2
; in other words, the 

points are all ordered pairs  (x, y)  such that   y  >  0.   The lines in this model are once 
again given by two types of subsets. 

(1)  Vertical open rays whose endpoints lie on the   x – axis.

(2)  Open semicircular arcs whose endpoints lie on the   x – axis.

The drawing below illustrates several lines in the Poincaré half � plane model. 
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The Poincaré half – plane model distance between two points is given by a formula in 
the first reference in the list of online sites at the beginning of this section.  As in the 

preceding case, one fundamentally important feature of the Poincaré half � plane model

is that its angle measurement is exactly the same as the Euclidean angle between two 

intersecting curves (i.e., given by the usual angle between their tangents).   

For at least a century, the two Poincaré models have been the most widely 
used ones for studying hyperbolic geometry. 

One reason for this involves important relations between the models and the subject of 
complex variables.   Further information can be found in many textbooks on that 
subject.  The following textbook is a specific example: 

S. Lang, Complex Analysis (4
th

 Ed., corrected 3
rd

 printing).  Springer –
Verlag, New York, 2003.  ISBN: 0–387–98592–1. 

Poincaré trivia.   The renowned mathematician and physicist (Jules) Henri Poincaré 

(1854 – 1912) was a cousin of Raymond Poincaré (1860 – 1934), who was President of 

France from 1913 to 1920 and Prime Minister of France for three terms (1912 – 1913, 

1922 – 1924, and 1926 – 1929).  

Appendix to Section 6:  Euclidean models of 

hyperbolic geometry  

This material may be skipped without loss of continuity. 

One important property of hyperbolic 3 � space is that it contains a surface called a
horosphere which is isometric to the Euclidean plane.   The hyperbolic plane and its 
properties might have been discovered sooner if mathematicians had previously found a 
surface in Euclidean space which were isometric to the hyperbolic plane.   

It would be very satisfying if we could give a nice model for the hyperbolic plane in 

Euclidean 3 � space for which the distance is something more familiar (i.e., the

hyperbolic distance between two points is the length of the shortest curve in the model 
joining these points), but unfortunately this is not possible.  The first result to show that 

no reasonably nice and simple model can exist was obtained by D. Hilbert (1862 – 1943) 

in 1901, and it was sharpened by N. V. Efimov (1910 – 1982) in the 1950s.   One 

reference for Hilbert’s Theorem is Section 5 � 11 in the following book:

M. Do Carmo, Differential Geometry of Curves and Surfaces,  Prentice – Hall, 
Upper Saddle River, NJ, 1976.  

In contrast, during 1950s N. H. Kuiper (1920 – 1994) proved a general result which 

shows that the hyperbolic plane can be realized in Euclidean  3 � space with the “right”
distance, but the proof is more of a pure existence result than a method for finding an 
explicit example, and in any case the results of Hilbert and Efimov show that any such 
example could not be described very simply.   Kuiper’s result elaborates upon some 

fundamental results of J. F. Nash (1928 – 2015); another an extremely important 



57 

general result of Nash implies that the hyperbolic plane can be realized nicely in 

Euclidean  n � space  if  n  is sufficiently large; it is known that one can take  n  �  6,

but apparently there are open questions about the existence of such realizations if  n  � 
5   or  4.   Here are two references for the realizability of the hyperbolic plane in 

Euclidean  6 � space; the first is the original paper on the subject, and the second
contains a fairly explicit construction of a nice model near the end of the file. 

 D. Blanuša, Über die Einbettung hyperbolischer Räume in euklidische Räume. 
Monatshefte für Mathematik  59 (1955), 217 – 229. 

http://www.math.niu.edu/~rusin/known-math/99/embed_hyper 

In yet another — and more elementary — direction,  it is not particularly difficult to 

represent SMALL PIECES of the hyperbolic plane nicely in Euclidean 3 � space.
In particular, this can be done using a special surface of revolution known as a  
pseudosphere.  Further information on this surface can be found in many differential 
geometry books.  

The pseudosphere is a surface of revolution for a curve called the tractrix; 
this surface extends infinitely to the right, becoming increasingly narrow as 
one moves in that direction such that the radii of the circles go to zero at 
infinity. If one removes the left hand boundary circle and the original tractrix 
curve, the remaining part of the surface is isometric to a region in the 
hyperbolic plane. 

Biographical footnote.   (This is basically nonmathematical information.)   The 
extraordinary life of John Nash received widespread public attention in the biography, A 
Beautiful Mind, by S. Nasar (1974 – ), and the semi – fictional interpretation of her book 
in an Academy Award winning film of the same name.  During the 1950s Nash proved 
several monumental results in geometry including the embedding theorem cited above.  
However, in nonmathematical circles he is better known for his earlier work on game 
theory, for which he shared the 1994 Nobel Prize in Economics with J. Harsányi  (1920 

� 2000)  and R. Selten  (1930 � 2016);  an ironic apsect of this is noted in the footnote
at the bottom of page 565 in the book by Greenberg. 

A more detailed account of the historical ties between geometry and physics is beyond 
the scope of these notes, but a fairly readable and detailed account of the history into 
the early 20th century is contained in the following book: 

C. Lanczos,  Space through the Ages: The evolutions of geometric ideas 
from Pythagoras to Hilbert and Einstein,  Academic Press, New York, 1970. 
ISBN: 0–124–35850–0. 
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 7 : The impact of hyperbolic geometry 

Hyperbolic geometry, which was considered a dormant subject ... 
[around the middle of the 20

th
 century], has turned out to have

extraordinary applications to other branches of mathematics. 

Greenberg, p. 382 

It seems appropriate to conclude these notes on non – Euclidean geometry with a brief 
discussion of the role it plays in present day mathematics.  Questions of this sort arise 
naturally, and In particular one might ask whether objects like the hyperbolic plane 
are basically formal oddities or if they are important for reasons beyond just 
showing the logical independence of the Fifth Postulate.  In fact,  hyperbolic 
geometry turns out to play significant roles in several contexts of independent 
interest.  Some of these date back to the 19th century, but others were first 
discovered during the last few decades of the 20th century.

Numerous properties of hyperbolic  n � spaces play fundamental roles in many aspects
of that subject, including some that have seen a great deal of progress over the past four 
decades.   Three books covering many of these advances are discussed in a relatively 

recent book review by B. Kleiner [ Bull. Amer. Math. Soc. (2)  39 (2002), 273 � 279. ] 
We shall only discuss a few topics that are relatively easy to explain.

Philosophical and practical consequences 

In the introduction to these notes, we noted that the emergence of non – Euclidean 
geometry had a strong impact on the philosophy and foundations of mathematics.  In the 
next few paragraphs we shall describe this impact in more detail.    

Background.   At the beginning of the 19th century, Euclidean geometry was viewed as 
a reliable foundation for mathematics.  Its importance for geometry is evident, but it was 
also important for algebra; in particular, very large portions of the  Elements  involve the 
use of geometrical methods to study irrational numbers.  The reasons for this heavy 
emphasis on geometry are described in the following passage from M. Kline’s  
Mathematics and the Physical World (Corrected reprint of the 1959 Ed., Dover, New 
York, 1981.): 

As of 1800, mathematics rested upon two foundations:  The number system and 
Euclidean geometry.   …  Mathematicians would have emphasized the latter because 
many facts about the number system, and about irrational numbers especially, were 
not logically established nor clearly understood.  Indeed, those properties of the 
number system that were universally accepted were still proved by resorting to 
geometric arguments, much as the Greeks had done 2500 [probably more like 2100] 
years earlier.  Hence, one could say that Euclidean geometry was the most solidly 
constructed branch of mathematics. 

These ideas are explicit in following two quotations from the writings of Isaac Barrow 
(1630 – 1677),  who is best known mathematically for his contributions to calculus and 
for teaching Isaac Newton: 

Geometry is the basic mathematical science, for it includes arithmetic, and 
mathematical numbers are simply the signs of geometrical magnitude. 
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Geometry is certain  [contrary to the infinitesimal calculus]  because of the clarity of 
its concepts, its unambiguous definitions, our intuitive assurance of the universal 
truth of its common notions, the clear possibility and easy imaginability of its 
postulates, the small number of its axioms ... 

This viewpoint is also implicit in Isaac Newton’s monumental work Principia, which uses 
Euclidean geometry as its logical foundation. 

At the beginning of these notes, we included a quotation from Kant reflecting his view of 
Euclidean geometry as description of  a priori  truths, just like the fundamental rules for 
arithmetic.   His viewpoint on such  a priori  truths is reflected in the following passage 
from The Story of Philosophy  (Pocket Books, Simon and Schuster, New York, 1991.) 

by W. Durant (1885 – 1981): 

We may believe that the sun will “rise” in the west tomorrow, or that … fire will not 
burn [a] stick, but  we cannot for the life of us believe that two times two will ever 
make anything else than four.  Such truths are true before experience … they are 
absolute and necessary; it is inconceivable that they should ever become untrue.  … 
These truths derive their necessary character from the inherent structure of our 
minds, from the natural and inevitable manner in which our minds must operate.   

As suggested by the quotation from Gauss at the beginning of this unit, the discovery of 

non – Euclidean geometry and the logical independence of the Fifth Postulate provided 
compelling evidence that the standard axioms for Euclidean geometry are not  a priori  
truths. 

The preceding developments had several implications.  One was a need to give a new 
description of geometry, and this was done along the lines indicated in the following 
quotation from Kline’s Mathematics in Western Culture  (Oxford University Press, New 
York, 1964): 

A [geometric] mathematical space now takes on the nature of a scientific theory. … 
The creation of the new geometries … forced recognition of the fact that there could 
be an “if” about mathematical systems.   If the axioms of Euclidean geometry are 
truths about the physical world then the theorems are.  But  … we cannot decide on a 
priori grounds that the axioms of Euclid, or of any other geometry, are [empirical] 
truths [about the physical world]. 

A second implication was the need to replace the role of Euclidean geometry as a 
foundation for mathematics by something else; actually, the discoveries related to the 
Fifth Postulate were just one of many factors which forced mathematicians to look more 
carefully at the foundations of the subject during the 19th century and to find solid logical 
justifications for the spectacular advances the subject had made during the preceding 
three centuries.  By the end of the 19th century the modern approach to the foundations 

of mathematics had essentially been outlined with (1) the development of set theory, 

(2)  the simple axiomatic characterization of the positive integers due to G. Peano (1858 

– 1932),   and  (3)  the formal construction of the real number system in terms of the

rational numbers and characterization of the real numbers due to R. Dedekind (1831 – 
1916).   Each of these stands as a major achievement for separate reasons.  In 
particular, Peano’s axioms effectively answered questions by philosophers such as John 

Stuart Mill (1806 – 1873) about the  a priori  nature of arithmetic, and Dedekind’s work 
finally resolved basic questions about irrational numbers which had been unanswered 

ever since the Pythagoreans discovered that the square root of 2 is irrational. 
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Some further advances.  Riemann’s insights opened the door to many new directions 
in geometrical research.  For our purposes, it will suffice to say that the work led to more 

refined characterizations of the classical non – Euclidean geometries, particularly in the 

work of H. von Helmholtz (1821 � 1894) and S. Lie (1842 � 1899). 

Practicality and convenience.   Of course, the study of mathematics has a huge 

practical component, so the practical impact of non – Euclidean geometries should also 
be considered.  We have already noted that Euclidean geometry is a good 
approximation to either spherical or hyperbolic geometry if one restricts attention to a 
fairly small region.  Since the formulas of Euclidean geometry are much simpler than 
those of the other geometries, for practical purposes it is generally more convenient to 
work inside Euclidean geometry unless the region under consideration is fairly large.  
The relative convenience of Euclidean geometry provides one answer to the issue raised 
in Poincaré’s statement which we quoted at the beginning of these notes.     

Geometry and modern physics 

The value of non – Euclidean geometry lies in its ability to liberate us 
from preconceived ideas in preparation for the time when exploration of 
physical laws might demand some geometry other than Euclidean. 

G. F. B. Riemann 

Although the emergence of non – Euclidean geometry raised immediate questions 
whether the physical universe satisfies the axioms of geometry, the real impact of these 
developments on physics did not begin for some time.    We have noted that Euclidean 
geometry provides an excellent approximation to hyperbolic and elliptic geometry in 
small regions, and until the end of the 19th century experimental observations and 
classical physics were consistent with the mathematics of Euclidean geometry.  
However, near the end of the century physicists found that classical physics did not 
provide adequate explanations for some key experimental observations, and this led 
physicists to consider new mathematical models which would conform more closely to 

experimental results.  Efforts by H. Lorentz (1853 – 1928) and G. FitzGerald (1851 – 
1901) to explain the results of one important experiment led to a generalization of 
Riemann’s geometric structures (Lorentzian geometry) that was a precursor to the 

Theory of Special Relativity introduced by A. Einstein (1879 – 1955) in 1905.   Further 

extensions of Riemann’s ideas led to the mathematical theory of space – time that
underlies General Relativity Theory.   Many other systems that can be called “theories of 
space” also appear in many contexts of 20th century (and present day) physics.  

We conclude this discussion by mentioning two frequently misstated or misunderstood 

points about Einstein’s work and its relation to non – Euclidean geometry. 

Is the geometry of relativity theory a non – Euclidean geometry?    The answer to 

this question depends upon how one defines non – Euclidean geometry.   One 
basic point in relativity theory is that the presence of mass warps or curves the structure 

of space – time.  In Euclidean geometry there is no curvature whatsoever, and thus it is 

clear that the geometry of space – time cannot be Euclidean.  Furthermore, since the 
distribution of mass in the universe varies from place (and time) to place (and time), the 

curvature of space – time is also variable.  In the classical non – Euclidean geometries 
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(hyperbolic and elliptic), the curvature is nonzero but the same at all points.  This means 

that  the relativistic geometry of space � time is neither  Euclidean, hyperbolic, 
nor elliptic.   Therefore the answer to the question at the beginning of this paragraph 

depends upon whether non – Euclidean means  anything that is not Euclidean (in which 
case the answer is  YES)  or means  only the classical examples  of hyperbolic and 
elliptic geometry  (in which case the answer is  NO). 

What was Einstein’s role in developing the mathematics of relativistic geometry?   
The basic mathematical framework for relativistic geometry had been previously created 
by others, and  Einstein’s fundamental insight was to see that this framework was 
useful for formulating certain fundamental laws of physics.   Einstein’s chief  
mathematical  contribution was a geometrical formula relating the curvature properties 

of space – time to the distribution of matter in the universe (the so – called Einstein 
tensor equation).   Here is a reference for a precise statement of this equation: 

http://en.wikipedia.org/wiki/Einstein_field_equation 

A more detailed account of the historical ties between geometry and physics is beyond 
the scope of these notes, but a fairly readable and detailed account of the history into 
the early 20th century is contained in the following book: 

C. Lanczos,  Space through the Ages: The evolutions of geometric ideas 
from Pythagoras to Hilbert and Einstein,  Academic Press, New York, 1970. 
ISBN: 0–124–35850–0. 

Regular tessellations 

The investigation of the symmetries of a given mathematical structure 
has always yielded the most powerful results. 

E. Artin (1898 – 1962) 

For some minutes Alice stood without speaking, looking out in all 
directions over the country  ...  “I declare it’s marked out just like a large 

chessboard  ...  all over the world — if this is the world at all.” 

Lewis Carroll (C. L. Dodgson, 1832 – 1898), Through the Looking 
Glass 

A mathematician is … a maker of patterns. 

G. H. Hardy (1877 – 1947), A Mathematician’s Apology 

Although a precise and comprehensive description of hyperbolic geometry’s place in 
modern mathematics is beyond the scope of these notes, we shall describe one 
geometric manifestation of its role.  However, before doing so we shall summarize the 
corresponding results for Euclidean and spherical geometry.    

The planar case.   A regular tessellation (or tiling) of the Euclidean plane is a 
decomposition of the plane into closed regions bounded by regular convex polygons 
such that the following hold: 

1. All the bounding polygons have the same number of sides.

2. If the intersection of two distinct regions is nonempty, then it is a common
side or vertex of the bounding polygons.
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There are three obvious ways to construct such regular tilings of the Euclidean plane.  If 
the regular polygons are squares, then one example corresponds to covering a flat 
surface by square tiles that do not overlap each other, and if the regular polygons are 
hexagons, then another example corresponds to the familiar honeycomb configuration of 
hexagons.   A third example this type is the covering of a flat surface by tiles that are 
equilateral triangles.  All of these are illustrated below.  

Greek mathematicians (probably as early as the Pythagoreans) realized that the 
preceding examples were the only ones (up to similarity). 

The spherical case.    On the surface of the sphere, the regular tessellations 
correspond to  regular polyhedra  whose vertices lie on the sphere.    More precisely, 
the vertices of the regular tessellation for the sphere are just the vertices of the regular 
polyhedron, its edges are the great circles joining two vertices (one for each pair of 
vertices which lie on a common edge of the polyhedron), and its faces are the regions 
bounded by the spherical polygons bounded by appropriate edges.   

In view of the preceding discussion, the description of regular tessellations for the 
sphere reduces to the description of the possible types of regular polyhedra. The two 
simplest examples of regular polyhedra are a cube and a triangular pyramid such that 
each face is an equilateral triangle.  Each of these illustrates the fundamental properties 
that all regular solids should have. 

1. Every 2 � dimensional face should be a regular  n � gon

for some fixed value of  n  �  3.

2. Every 1 � dimensional edge should lie on exactly two faces.

3. Every vertex should lie on  r  distinct faces for some fixed

value of  r  �  3.

4. No three vertices are collinear.

5. Given a face  F,  all vertices that are not on  F  lie on the
same side of the plane containing  F.

Regular polygons beyond triangles and squares were known in prehistoric times, and in 
fact archaeologists have also discovered early examples of stones carved and marked 

to represent several (in fact, most and maybe all) 3 � dimensional regular polygons.
One major achievement of Greek mathematics (which appears at the end of Euclid’s 
Elements) was the proof that there are exactly five distinct types of regular 
polyhedra, and they are listed and illustrated below: 
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Type of 
polyhedron 

No. of 
vertices 

No. of 
edges 

No. of 
faces 

tetrahedron 4 6 2 
cube 8 12 6 

octahedron 6 12 8 
icosahedron 12 30 20 

dodecahedron 20 30 12 

(Source: http://www.goldenmeangauge.co.uk/platonic.htm) 

Examples in the hyperbolic plane 

The situation in the hyperbolic plane is entirely different.  One important reason is given 
by the following result, which is also mentioned on page  176  of the book by Ryan. 

Theorem 2.    Let  n  be an integer greater than  2,  and let  θθθθ     be a positive number less 
than  180 (n � 2)�n.  Then there is a regular hyperbolic  n � gon such that all the 
sides have equal length and the measures of all the vertex angles are equal to  θθθθ. 

In particular, if  n  is  greater than  4  and  θθθθ  �  90,  then one might expect that we can

form a regular tessellation of the hyperbolic plane with regular  n � gons such that four

meet at each vertex.  In fact, this is possible.   This is a special case of the following 
general result: 
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Theorem 3.    Suppose that  m,  n   �   3  are integers such that 

.
2

111
<<<<++++

nm

Then there is a regular tessellation of the hyperbolic plane into solid regular  n � gons
with  m  distinct polygons meeting at each vertex.  Conversely, if there is a regular 
tessellation of the hyperbolic plane into solid regular  n � gons with  m  distinct 
polygons meeting at each vertex, then the displayed inequality holds.   

There are several ways to prove this theorem.  In particular, algebraic results of  W. F. 

von Dyck (1856 – 1934) give an approach which is related to the viewpoint of Ryan’s 
book. 

Since there are infinitely many pairs of positive integers  m  and  n  satisfying these 
conditions, it follows that  there are infinitely many distinct regular tessellations of 
the hyperbolic plane.   The type of such a tessellation is generally denoted by the 

ordered pair (n, m).  A few illustrations are given below. 

(5, 4) 

(3, 12) 
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(4, 8) 

(4, 6) 

Regular tessellations of the hyperbolic plane also appear in some of the artwork created 

by M. C. Escher (1898 – 1972).   For example, the angels and devils in the picture  

Circle Limit  IV  fit together to form a tessellation by regular hexagons with right angles 

at every vertex (type (6, 4) in our notation).  This can be seen from the illustrations 
below: The name is pronounced ESS-kher 

where kh is pronounced as in Bach
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A unified perspective on tessellations 

There is an interesting relationship between Theorem  3  and the results for regular 
tessellations of the sphere and the Euclidean plane.  In the Euclidean plane, there is a 

regular tessellation into solid regular  n � gons with  m  distinct polygons meeting at

each vertex if and only if  

.
2

111
====++++

nm

because this equation holds if and only if  (n, m)  is equal to one of the three ordered 

pairs  (3, 6),  (4, 4)  or  (6, 3).  Similarly, on the sphere there is a regular tessellation of 

the hyperbolic plane into solid regular spherical  n � gons with  m  distinct polygons

meeting at each vertex if and only if  

2

111
>>>>++++

nm

This is Escher's Circle 

Limit IV
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because this equation holds if and only if  (n, m)  is equal to one of the five ordered 

pairs  (3, 3),  (3, 4),  (3, 3),  (3, 5)  or  (5, 3).  If we combine these observations with 

Theorem 3, we obtain the following unified conclusion: 

For each ordered pair (n, m) such that  m,  n   �   3,  there is a

regular tessellation of either the Euclidean plane, the hyperbolic 

plane or the sphere into solid regular  n � gons with  m  distinct

polygons meeting at each vertex, and the specific type of plane 

supporting such a configuration is given by comparing  ½  to the 
previously described sum of reciprocals: 

nm

11
++++

 

In particular, the relevant geometry will be  spherical if this sum 

is greater than  ½, it will be  Euclidean if this sum is equal to  

½, and it will be  hyperbolic if this sum is less than  ½. 

Final remarks 

It seems appropriate to end these notes with the following quotation from page 105 of 
the book by Greenberg: 

Let us not forget that no serious [sustained] work toward constructing 
new axioms for Euclidean geometry had been done until the discovery of 

non – Euclidean geometry shocked mathematicians into reexamining the 
foundations of the former  [ Comment :  Other considerations also played 
important roles in forcing a review of the foundations for classical 

geometry ].  We have the paradox of non – Euclidean geometry helping 
us to better understand Euclidean geometry! 




